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Abstract—Leakage power has already become the major
contributor to the total on-chip power consumption, rendering
its estimation a necessary step in the IC design flow. The
problem is further exacerbated with the increasing uncertainty
in the manufacturing process known as process variability. We
develop a method to estimate the variation of leakage power in
the presence of both intra-die and inter-die process variability.
Various complicating issues of leakage prediction such as spatial
correlation of process parameters, the effect of different input
states of gates on the leakage, and DIBL and stack effects are
taken into account while we model the simultaneous variability of
the two most critical process parameters, threshold voltage and
effective channel length. Our subthreshold leakage current model
is shown to fit closely on the HSPICE Monte Carlo simulation
data with an average coefficient of determination (R2) value of
0.9984 for all the cells of a standard library. We also demonstrate
the adjustability of this model to wider ranges of variation and
its extendability to future technology scalings. We show that our
framework imposes little timing penalty on the system design flow
and is applicable to real design cases. The procedures explained in
this paper are part of VAREX, an academic variability modeling
framework for estimation of the effect of process variation on
power consumption and performance of Multiprocessor SoCs.

I. INTRODUCTION

As the semiconductor technology scales into ever deeper

regimes, power dissipation asserts its dominance as one of the

most critical design metrics. The increase in dynamic power

consumption is usually compensated for by down-scaling of

the supply voltage. This scaling necessitates a decrease in

transistor threshold voltages to maintain their switching speed

and chip performance. As a result and due to its exponential

dependence on threshold voltage, leakage power has emerged

as the main contributor to the total on-chip power dissipation

[1], [2]. Leakage current is also exponentially dependent on

transistor critical dimensions which are rapidly scaling down

as the technology moves towards one-digit-nanometer nodes.
Also concomitant to the aggressive scaling of transistors is

the increased variability in manufacturing process parameters,

specifically transistor threshold voltage and critical dimensions

such as effective channel length. The strong dependence of

leakage power on these varying parameters renders it as an es-

sentially random variable. Traditional worst case corner-based

approach has proved too pessimistic, making it inevitable

to move toward statistical estimation methods in order to

obtain detailed information on the behavior of leakage power.

Hence, it is essential to develop accurate variation-aware

leakage power estimation methods to be used at all design

levels. We are developing a variability modeling framework

called VAREX [3] that estimates the distributions of power

consumption and frequency of Multiprocessor SoCs. In this

paper, we describe the models and procedures used by our

framework to obtain leakage power distribution in the presence

of process variation.

Our main contributions may be summarized as follows:

• We develop a novel, variation-aware leakage current

model by examining all major considerations at the

transistor level in order to enable highly accurate charac-

terization of standard cells. To the best of our knowledge,

we are the first to simultaneously take into account major

sources (Vth and Leff ) and types (intra-die and inter-

die) of process variation and address other complicating

issues such as DIBL effect. The model is also highly

flexible in terms of the level of the accuracy it provides

and can be adjusted to handle further technology scalings

by choosing the appropriate degree of approximation.

• We propose a complete framework for estimation of full-

chip leakage power distributions in presence of process

variation. Our framework uses a Monte Carlo based ap-

proach, and is thus highly-accurate while the components

of the framework are designed in a way that only a

minimal timing penalty is imposed on the flow of system

design.

A. Related Work

The methods for estimating the effect of process variation on

power consumption used in previous research can be divided

into two categories. Monte Carlo based approach is often taken

too strictly [12] and includes extensive complex computations

which require long simulations times. The majority of the

works have, however, focused on the Wilkinson’s method as

the most effective approach for approximating the sum of

lognormal distribution functions [16], [15], [21], [14], [20].

These methods exchange the accuracy of Monte Carlo method

with reduced estimation time and computation complexity.

We take a hybrid approach where we first develop a simple

model for estimation of the leakage current of standard library

cells and then use Monte Carlo experiments to obtain full-chip

leakage power distribution.
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In order to be satisfactorily accurate, a variation model must

take various considerations into account. Several works on sta-

tistical power analysis and estimation have investigated these

concerns. However, none have presented a comprehensive

framework that could address all issues simultaneously, and

are thus not accurate enough. Three distinct deficiencies could

be observed in the existing estimation methods. A majority of

them do not consider inter-die (die-to-die) variations (i.e. the

difference in process parameters of identical chips within a

wafer) [12], intra-die (within-die) variations (i.e. the difference

in process parameters of identically designed transistors within

a die) [14], or the spatial correlation of process parameters

among proximate cells [20], [12]. Most of the existing models

do not take into account the simultaneous effect of threshold

voltage and effective channel length on leakage current [13],

[20]. Those that do, either assume a linear relation between

these parameters [15], [14] or take an approach which is not

extendable to future technology scalings [20]. And finally,

specific considerations of leakage current modeling such as

the effect of the input state, or DIBL and stack effects are not

taken into account in many frameworks [14], [12], [21], [20].

B. Paper Overview

As will be discussed in the following sections, our frame-

work addresses all these issues and provides accurate estima-

tions of leakage power distribution while it is fast enough to be

included in system level CAD tools as a part of variation-aware

chip design flow. Fig. 1 shows an overview of our leakage

estimation framework and when each stage is performed in

relation to the traditional design steps. As illustrated in Fig.

1, cell characterization and variation map generation are

performed in parallel to pre-P&R steps, imposing no additional

timing penalty. After P&R, the position of the cells extracted

from the final layout along with the variation maps reflecting

within-die and die-to-die variations are fed into the leakage

models of the characterization stage to derive the final leakage

distribution.

The remaining of the paper is organized as follows. We

begin, in Section II, with constructing a model for analyzing

the simultaneous effect of threshold voltage and effective

channel length variations on leakage current of a cell, and

explain how we use the model for characterization of standard

library cells. Section III describes our process variation model

and the procedures used for Monte Carlo experiments to derive

final leakage distributions. We present an evaluation of our

framework in terms of accuracy and performance in Section

IV and compare it to another well-known approach. Finally, in

Section V, we conclude our discussion and point to the future

directions for improving our work.

II. CELL CHARACTERIZATION

A. Formulation

Subthreshold leakage current is considered as the main con-

tributor to the total on-chip leakage current as rapid adaptation

of high-k gate dielectric has effectively reduced gate leakage

[17]. As discussed in [19], subthreshold current of a CMOS
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Fig. 1. Overview of our variability modeling framework

network is proportional to subthreshold current of one of its

constructing transistors with the proportionality constant and

the specific transistor being different for each set of inputs to

the gate. Thus, considering equal probabilities for all possible

input sets, we model subthreshold leakage current of a cell

with n inputs and m transistors numbered from 1 to m as

Icellsub =
1

2n

2n∑
i=1

a(i).I
N(i)
sub ; 1 ≤ N(i) ≤ m (1)

where a(i) and N(i) are, respectively, the proportionality

constant and the transistor number specific to the ith input

set, and Ijsub is the subthreshold current of the jth transistor.

Although [19] does not consider process variability, its results

may be extended to our discussion of process variability.

Hence, to analyze the effect of process variation on the leakage

current of a cell, it suffices to model the leakage current of

one transistor in the presence of process variation for every

set of inputs to the cell.

We, therefore, proceed by constructing a model for the

subthreshold current of a transistor for analyzing the simul-

taneous variability in Vth and Leff . The model will have

the general form of y = f(x1, x2) where y symbolizes the

subthreshold current, f(.) represents its dependence on the

variability in threshold voltage and effective channel length

and x1 and x2 characterize this variability. The remaining of

this section explains how we choose x1, x2, and the function

f(.). For function f(.) to be derivable in a closed form,

random variables x1 and x2 must meet the following two

conditions:

• They must, jointly, include all variation sources that

change threshold voltage and effective channel length.

• They must be statistically uncorrelated; i.e. a single varia-

tion source must not change both of them simultaneously.

According to BSIM4 device model [22], effective channel

length of a transistor is modeled independent of threshold

voltage. Therefore, we can choose x1 = Leff without vio-

lating the second condition mentioned above. Moreover, x1

will naturally include all the variation sources that change

the effective channel length, working towards meeting the
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first condition. Threshold voltage, on the other hand, is not

independent of channel length. Hence, we cannot assign it to

x2. We must differentiate between channel-length-dependent
threshold voltage variations (variations in threshold voltage

stemming from variations in channel length) and channel-
length-independent variations (variations in threshold voltage

that are not affected by channel length variations), and choose

x2 such that it includes all channel-length-independent varia-

tions, but no channel-length-dependent variations. This choice

of x2 along with our choice of x1 = Leff will then satisfy

both conditions mentioned above. Equation (2) shows the

BSIM4 model for threshold voltage.

Vth = V TH0 + ΔVth(SCE,DIBL) + ΔVth(Dopant)

+ ΔVth(Narrow Width) (2)

Here, V TH0 is the threshold voltage of the long channel

device at zero substrate bias, ΔVth(SCE,DIBL) is the

change in threshold voltage due to short channel and DIBL

effects, ΔVth(Dopant) is the change in threshold voltage due

to non-uniform substrate doping, and ΔVth(Narrow Width)
is the change in threshold voltage due to the decrease in

channel width.

Variations in threshold voltage can, therefore, be contributed

to variations in the components of (2). We should, then,

examine each component’s dependency on channel length to

identify it as either a channel-length-independent or channel-

length-dependent variation source. ΔVth(SCE,DIBL) varies

exponentially with Leff and is clearly a channel-length-

dependent variation source. ΔVth(Dopant) models the non-

uniformity of dopant concentrations in both vertical and lateral

directions.

ΔVth(Dopant) = ΔVth(V ertical) + ΔVth(Lateral) (3)

ΔVth(V ertical) is completely independent of channel length

rendering it as a channel-length-independent variation source.

Non-uniform doping concentration in lateral direction will,

on the other hand, result in greater Vth roll-ups in

short-channel devices resembling the Leff -dependent na-

ture of ΔVth(Lateral). However, compared to the ex-

ponential dependency of ΔVth(SCE,DIBL) on channel

length, we can safely neglect the weak dependency of

ΔVth(Lateral) on Leff and place this component in the

channel-length-independent category as well. Therefore, while

ΔVth(Dopant) covers Random Dopant Fluctuations (RDF)

as the main source of variation in threshold voltage, it does

not include any channel-length-dependent variations. Finally,

ΔVth(Narrow Width) changes threshold voltage in two

ways as shown in (4).

ΔVth(Narrow Width)

= ΔVth(Narrow Width1)

+ ΔVth(Narrow Width2)(4)

As channel width increases, the depletion region underneath

the fringing fields becomes comparable to the depletion

layer formed from the vertical field, and this in turn in-

creases the threshold voltage. Using BSIM4 notation, we call

this ΔVth(Narrow Width1) and represent the change in

threshold voltage due to the width effect for small channel

lengths with ΔVth(Narrow Width2). According to [22],

ΔVth(Nar row Width1) and ΔVth(Narrow Width2) are,

respectively, completely independent and exponentially de-

pendent on effective channel length. Thus, the two terms

correspond to channel-length-independent and channel-length-

dependent variations respectively.

To summarize our discussion of threshold voltage variation

sources, we can rewrite (2) as

Vth = V TH0 + ΔVth(CLI) + ΔVth(CLD) (5)

where

ΔVth(CLI) = ΔVth(Dopant)

+ ΔVth(Narrow Width1) (6)

ΔVth(CLD) = ΔVth(SCE,DIBL)

+ ΔVth(Narrow Width2) (7)

It is now clear that choosing x2 = ΔVth(CLI) together with

our choice of x1 = Leff satisfies both conditions mentioned

for the independent variables of our model. We now proceed

to determine the function f(.). To this end, we first express

leakage current as functions of each model parameter (i.e. Vth

and Leff ) separately. In other words, we first choose the two

functions f1(x1) = f(x1, x2 = c) and f2(x2) = f(x1 =
c, x2). Then, considering the fact that the final model must

preserve the behavior expressed in these two functions in cases

where one parameter is held fixed, we propose the leakage

current model as a product of these two functions.

Based on BSIM4 device model [22], subthreshold leakage

current of a transistor can be expressed as

Isub = I0 . [exp(
Vgs − Voff − Vth

nVT
)] . [1− exp(

−Vds

VT
)] (8)

where I0 is the nominal subthreshold current, VT is the

thermal voltage, Voff is the offset voltage which determines

the channel current at Vgs = 0, and n is the subthreshold swing

factor. Therefore, for a given set of voltages on its terminals,

subthreshold current of a transistor as a function of Vth can

be modeled as

Isub = C1 . exp (C2 . Vth) (9)

where

C1 = I0 . exp (
Vgs − Voff

nVT
) . [1− exp (

−Vds

VT
)] (10)

C2 = − 1

nVT
(11)

Substituting (5) in (9) gives

Isub,V

= C1 . exp [C2 . (V TH0

+ ΔVth(CLI) + ΔVth(CLD))] (12)
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now, by considering constant Leff , we obtain

Isub,V

= C ′
1 . exp (C2 . ΔVth(CLI))

= C ′
1 . exp (C2 .V TH) (13)

where

C ′
1 = C1 . exp [C2(V TH0 + ΔVth(CLD))] (14)

and V TH is the simple notation we will use for channel-

length-independent variation in threshold voltage in our final

model and in the remaining of the paper. Since this model

works in situations where Leff is held fixed (x1 = c), it may

serve as our f2(x2) function.

To find subthreshold leakage as a function of Leff , we can

substitute Vth in (9) with a function describing its dependency

on Leff . However, since it is not possible to analytically find

such a function, we can approximate it with a polynomial

function of Leff to obtain

Isub,L = q0 . exp (
n∑

i=1

qi.(Leff )
i) (15)

where qis are fitting parameters and n is the degree of

approximation. Since this model works in situations where Vth

is held fixed (x2 = c), it may serve as our f1(x1) function.

Now that we have chosen f1(x1) and f2(x2), we propose to

form the final model as f(x1, x2) = f1(x1) . f2(x2) which

gives

Isub = c . exp (p0 . V TH +
n∑

i=1

pi.(Leff )
i) (16)

where c, and pis are coefficients to be determined based on

actual leakage values. As mentioned earlier, note that although

(16) is essentially a model for subthreshold current of a single

transistor, we may use it to model the current of a cell as

well. This is based on the results of [19] that the subthreshold

current of a cell is proportional to the current of one of its

constructing transistors. Therefore, we can fit (16) on the

leakage values of a cell, merging the proportionality constant

(expressed in our cell leakage model (1) as a(i)) with the

coefficient c in (16). However, it should be noted that the

coefficients of (16) must be chosen for each set of inputs to

the cell separately. In other words, we will have a separate

subthreshold current model for each input set.

B. Characterization

Note that n in (15) must be chosen based on the tech-

nology node under study. Fig. 2 illustrates the dependency

of threshold voltage on effective channel length over a wide

range of Leff values shown in meter. It can be observed that

while a quadratic or even a linear approximation function of

Leff to model Vth may be acceptable for 45nm and above

technologies, the increased scaling of transistor dimensions

and wider variability range of future technologies make more

accurate approximations necessary. As shown in Fig. 1, in this

step, leakage current models are constructed for all the cells
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Fig. 2. The dependency of threshold voltage on effective channel length over
a wide range of Leff variations

of a standard library. We propose guidelines as to how the

coefficients of (16) should be determined. Being independent

of the specific design, this step can be performed in parallel

to, or even before the placement and routing, imposing no

timing penalty on the chip design flow. Moreover, this step

needs to be performed only once, and all the designs based

on the characterized library may use its results.

To determine the coefficients of (16), we only need n + 2
accurate leakage values, n being the degree of approximation

as introduced in (15). These values can be obtained through

either actual measurements or transistor-level simulations with

n+ 2 sets of doping concentration and channel length values

preferably scattered across the desirable range of parameter

variations. We will, then, have n + 2 ordered triples, (I1,

V TH1, L1) through (In+2, V THn+2, Ln+2), which when

substituted in (16), will provide us with a system of n + 2
equations. Dividing all equations by one of them, say the first

one, and taking log of both sides will result in a system of

n+1 linear equations (I = AP ) where A, P , and I are defined

as

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

V TH2 − V TH1 L2 − L1 L2
2 − L2

1

V TH3 − V TH1 L3 − L1 L2
3 − L2

1

. . .

. . .

. . .
V THn+2 − V TH1 Ln+2 − L1 L2

n+2 − L2
1

⎞
⎟⎟⎟⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

p0
p1
.
.
.
pn

⎞
⎟⎟⎟⎟⎟⎟⎠

I =

⎛
⎜⎜⎜⎜⎜⎜⎝

log( I2I1 )

log( I3I1 )

.

.

.

log( In+2

I1
)

⎞
⎟⎟⎟⎟⎟⎟⎠
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Therefore, pis can be calculated as

pi =
|Ai|
|A| , 0 ≤ i ≤ n

where Ai is the matrix formed by replacing the ith column of

A by the column vector I . Then, replacing these values in the

first equation will give c as

c =
I1

exp(p0.V TH1 +
∑n

i=1 pi.(Leff )i)

These coefficients, which are determined for all the cells in

the standard library, are then used in the “Variability Analysis”

stage which is explained next.

III. VARIABILITY ANALYSIS

As illustrated in Fig. 1, this step is performed right after the

placement-and-routing stage of the design when the positions

of all the cells of the chip are determined. In this section,

we explain the process variation model used in this work and

describe the procedures used to obtain final leakage power

distributions.

A. Process Variation Model

Similar to [5], [6], [7], we model the random and systematic

components of both die-to-die (D2D) and within-die (WID)

variations as zero-mean normal distributions. Therefore, each

process parameter is modeled as a random variable as shown in

(17) and (18) with four Gaussian independent components that

correspond to systematic D2D variation, random D2D varia-

tion, systematic WID variation and random WID variation.

Ndep = n0+nsys d2d+nrnd d2d+nsys wid+nrnd wid (17)

Leff = l0 + lsys d2d + lrnd d2d + lsys wid + lrnd wid (18)

Here, n0 and l0 are nominal values of doping concentration

and effective channel length and the remaining terms represent

the four random variables named above. As in [8], we assume

that each of the mentioned components contribute equally

to the total variation. V TH values corresponding to each

variation-included Ndep value are obtained using equations in

[22]. We use geoR [9], geostatistical analysis package of R

[10] to generate large numbers of different sets of WID and

D2D variation maps for each of the process parameters while

taking spatial correlation of the effective channel length into

account. A variation map reflects the amount of variation in

a process parameter across the surface of the die. Similar to

[7], we use the spherical function (19) to incorporate spatial

correlation of the effective channel length.

ρ(r) =

{
1− 3r

2Φ + r3

2Φ3 r ≤ Φ
0 otherwise

(19)

Here, ρ(r) is the correlation function, r is the distance between

two points on the chip, and Φ is the Range, the distance

between two points where they will be no longer correlated.

We then divide the die area into regions of area ARegion.

ARegion is chosen such that the correlation function ρ(r)
would not change considerably across each region.

TABLE I
PROCESS PARAMETERS WITH RESPECTIVE MEAN AND

VARIANCE VALUES

Parameter Mean(μ) Variance(3σ / μ)

Vth 180mV 30%

Leff 17.5nm 15%

B. Full-Chip Leakage Estimation

The total leakage power consumption of a chip is calculated

using a summation of the leakage values of all its constructing

cells. After the placement and routing stage, the positions

of the cells can be extracted from the final layout of the

design. For each variation map, the value of each transistor

parameter may be determined for all the cells. These values

may then be used to calculate the total leakage power of the

chip. This process, when performed for all variation maps

in a series of Monte Carlo experiments, provides us with an

accurate estimation of leakage power consumption in presence

of process variation.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the accuracy and timing

performance of our framework and compare it to the widely

used Wilkinson’s Method. We evaluate our framework against

transistor level HSPICE simulation data to verify its accuracy

and apply it to a real design to examine its imposed timing

overhead over the system design flow. We further present

a complexity analysis of our framework to prove its easy

application to larger designs.

A. Accuracy Evaluation

We evaluated our leakage current model by fitting it on

leakage values generated by HSPICE simulation and analyz-

ing the resulting goodness-of-fit measures. Note that since
we use no approximations for deriving final leakage power
distributions from these models, our evaluation of the accuracy
of them serves as the evaluation of our variability modeling
framework as a whole. In other words, assuming the accuracy

of the process variation parameters and our leakage models,

our approach to finding the leakage power distributions (Monte

Carlo experiments of calculating leakage values for each

variation map) closely resembles a practical scenario in which

one would form a distribution of leakage power consumption

of a set of chips by measuring their actual leakage currents

after fabrication. Furthermore, our approach would nullify

the inaccuracies inherent to measuring devices by calculating

the full-chip leakage as a mathematical summation of cell

leakages. With these arguments as the justifications for our

evaluation method, we proceed to evaluate the accuracy of

our leakage model.

Similar to [20], we set n in (16) to 2. We show that this is

sufficient for our 45-nm library, but note that a higher degree

of approximation may be needed for more scaled technologies.

Our subthreshold current model would then be formed as

Isub = c . exp (p0 . V TH + p1 . Leff + p2 . (Leff )
2) (20)
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TABLE III
COEFFICIENT OF DETERMINATION VALUES FOR THE 18 CELLS USED FOR THE EVALUATION OF OUR MODEL AND IMPLEMENTATION OF OUR

OPENRISC-BASED MPSOC

Cell Name DFF X1 INV X4 CLKBUF X1 INV2 X2 INV2 X1 INV X8 AND2 X1 AND2 X2 NOR2 X2

R2 0.9953 0.9988 0.9995 0.9996 0.9982 0.9984 0.9979 0.9983 0.9963

Cell Name XOR2 X1 AND2 X4 NAND2 X2 DLH X1 NAND2 X1 MUX2 X1 BUF X1 DLL X1 BUF X2

R2 0.9993 0.9992 0.9998 0.9972 0.9997 0.9984 0.9997 0.9972 0.9984

TABLE II
GOODNESS-OF-FIT MEASURES OF OUR CURRENT LEAKAGE MODEL FOR

A 2-INPUT NAND CELL

Input Sets SSE R-square RMSE
00 1.955e-16 0.9996 4.43e-10

01 3.78e-16 0.9999 6.161e-10

10 5.305e-16 0.9999 7.298e-10

11 1.74e-17 0.9999 1.322e-10

We used 18 most common cells of Nangate Open Cell

Library[11], and ran 1000 simulations per cell per input set.

Table I summarizes the process parameters corresponding

to 45nm technology. We stored corresponding V TH and

leakage current values obtained from the formulas in [22] and

HSPICE simulations. Finally, we used a MATLAB surface

fitting tool for the process of non-linear multivariate regression

and determining goodness-of-fit measures. Fig. 3 and Table II

show the results of the fitting process for a 2-input NAND

cell as an example. In Table II, SSE, R-square and RMSE
correspond to Sum of Squares Due to Error, Coefficient of
Determination, and Root Mean Squared Error respectively.

As evident in the figures and the goodness-of-fit measures, the

model fits closely onto the HSPICE simulated leakage values

and is robust enough to account for DIBL and stack effects.

Table III lists the corresponding coefficient of determination

for each cell. The mean coefficient of determination (R2) of

our model for all the used cells in the standard library is 0.9984

with a minimum of 0.9953 at the worst case indicating the

good accuracy of the model. As stated before, we perform

Monte Carlo experiments to derive final leakage distributions

by summing the leakage values calculated using these models,

and there exists no other approximations or error sources in

the framework. Hence, we have demonstrated the accuracy of

our framework by verifying the accuracy of our cell leakage

models.

B. Performance Evaluation

We applied our framework to a real design to measure its

imposed timing overhead. Note that the two components of

Cell Characterization and Variation Map Generation can be

performed off-line and in parallel or prior to the design flow,

and do not contribute to the timing overhead of our framework.

The overhead is measured in the Variability Analysis stage

(more specifically in Total Leakage Calculator block in Fig.

1). The experimented design was an OpenRISC [18] processor

core. The core was synthesized by Synopsys Design Compiler

using the 18 cells listed in Table III and placed and routed by

Cadence Encounter. The resulting layout consisted of around
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Fig. 3. Fitting results of our current leakage model on the HSPICE simulation
data. The four figures, from top-left to bottom-right, correspond to 00, 01, 10,
and 11 input sets

15k standard cells and occupied a die area of 200× 200μm2.

The same process variation values described in Table I were

used and a set of 900 variation maps were produced using the

method described in Section IV with a Φ value of 0.5 and

ARegion value of 0.5 × 0.5μm2. The timing overhead was a

nominal 1.72 seconds on a 1.73GHz Intel Core 2 Duo machine

with a 2.00GB RAM and running a 32-bit Windows 7. Since

the computation complexity of our method is O(N) where

N is the number of cells in the design, it can be inferred

that our method would impose a timing penalty of around

1700 seconds (28 minutes) for a typical 15 million-cell design

which demonstrates the practicality of its usage in real world

applications.

C. Comparison with Previous Methods

In this subsection, we will present a comparison of our

framework with previously proposed methods in terms of ac-

curacy and performance. Most statistical approaches to leakage

power variability analysis use the well-known Wilkinson’s

Method as the most effective method for approximating the

sum of log-normals. This method is used to approximate the

mean and standard deviation (SD) of the full-chip leakage

power distribution using mean and SD values of individual

standard cells. Our approach is fundamentally different, in

that it forms the desired leakage distribution by point-by-
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Fig. 4. Leakage Power Distribution of OpenRISC Processor Core Using
Wilkinson’s Method and Our Framework

point mathematical summation of cell leakage values. Our
Monte Carlo approach ensures that our method is superior in
terms of accuracy assuming both methods use the same cell
leakage models. This is because we use no approximations
for calculating the final leakage distributions. Therefore, to

examine the level of inaccuracy in Wilkinson’s Method of

summing log-normals, we implemented this method and used

it to estimate the leakage power distribution of our OpenRISC

design. Note that since we used the same cell leakage models

as the input to Wilkinson’s Method, the difference between its

results and those obtained from our framework reflect the error

introduced by Wilkinson’s Method with respect to a purely

Monte Carlo approach. Fig. 4 shows the final normalized

leakage distributions derived from our framework and Wilkin-

son’s Method. While the mean and SD values estimated by

Wilkinson’s Method are relatively accurate, with respectively

2.1% and 3.4% errors with respect to our Monte Carlo based

approach, the assumption that the full-chip leakage distribution

follows a log-normal pattern introduces larger errors. As an ex-

ample of possible errors in practical applications, we compared

the leakage-yield of our OpenRISC design estimated by both

methods. Table IV shows these values and their difference for

various leakage power constraints. The contraints in the first

column are expressed in relation to the nominal, variation-free

leakage power estimate. To approximate the distribution of the

sum of log-normals, Wilkinson’s Method assumes another log-

normal as the resulting distribution and matches its first and

second momentums with those of the distribution of the sum

of log-normals as shown in the following equations. It is easy

to infer that the computation complexity of this method is

O(N2) where N is the number of log-normals to be summed

(i.e. the number of cells in our case).

eY1 + eY2 + ...+ eYn ≈ eZ

μ1 = E[eY1 + ...+ eYn ] = eμZ+σ2
Z/2

=

n∑
i=1

eμY i+σ2
Y i/2

μ2 = E[(eY1 + ...+ eYn )
2] = e2μZ+2σ2

Z

=
n∑

i=1

e2μY i+2σ2
Y i

+ 2
n−1∑
i=1

n∑
j=i+1

eμY i+μY j+(σ2
Y i+σ2

Y j+2ρijσiσj)/2

where ρij is the correlation coefficient of Yi and Yj . Then,

mean and standard deviation would be obtained as:

mZ = 2lnμ1 − 1

2
lnμ2

σ2
Z = lnμ2 − 2lnμ1

This approach reduces the error in the mean and SD values of

the approximated distribution. However, as indicated by our

results in Table IV, the assumption that the final distribution

follows a log-normal pattern may be inaccurate especially

in cases where there exists high levels of spatial correlation

between process parameters. Our approach eliminates this

possible inaccuracy by forming the final distribution using

mathematical summations of cell leakage values.

In terms of performance, the computation complexity of our

framework and Wilkinson’s Method are O(N) and O(N2)
where N is the number of cells in the design. Of course,

there have been several attempts to reduce this complexity.

Chang and Sapatnekar [4] proposed a method to decrease

the computation complexity of Wilkinson’s Method to O(n2)
where n is the number of grids used in variability analysis. It

is obvious that n can be significantly smaller than the number

of cells, but the quadratic complexity causes estimation times

to increase dramatically for large, real world circuits. Kim et.

al. [21] have also proposed a method called VCA that has

a computation complexity similar to ours (O(N)). However,

their use of Wilkinson’s Method keeps the possibility of

unacceptable error rates as indicated by our results in Table

IV. As expected, the VCA approach’s error rate increases with

the amount of process variability [21].

In summary, our framework has a lower or equal complexity

compared to other leakage estimation methods while it is more

accurate as it uses no approximations in forming the final

distributions. Furthermore, our transistor level analysis of cell

leakage power provides us with more accurate cell leakage

models as shown in the previous subsection and renders our

framework even more accurate.

V. CONCLUSION AND FUTURE WORK

We presented a variation-aware leakage power estimation

method which is used as a part of our variability model-

ing framework for analyzing the effect of process variation

on power consumption and performance of Multiprocessor

SoCs. We developed a subthreshold leakage current model
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TABLE IV
LEAKAGE-YIELD ESTIMATIONS BY WILKINSON’S METHOD AND OUR

FRAMEWORK FOR DIFFERENT LEAKAGE POWER CONSTRAINTS

Constraint Wilkinson’s Method Our Framework Difference
1.1 41% 45% 4%
1.2 46% 53% 7%
1.3 52% 59% 7%
1.4 57% 65% 8%
1.5 62% 69% 7%

Average - - 6.6%

and demonstrated its reliability through comparison of its

predictions with HSPICE simulation data. We showed how our

model could be adjusted for wide ranges of process variation

and scaled transistor dimensions in future deep sub-micron

regimes by choosing the degree of Vth-Leff dependency

approximations. Through using a combination of Monte Carlo

experiments and our developed leakage model, we could

maintain high accuracy while keeping an acceptable timing

penalty imposed by the variability analysis procedures. We

plan to include a better estimation of a cell leakage using a

more accurate prediction of its input state. This can be done

by propagating state probabilities of the nodes through the

entire circuit. Integration of other process parameters such

as oxide thickness in our subthreshold leakage model is also

straightforward and may be used to achieve more accurate

estimations.

ACKNOWLEDGEMENT

This work has been supported in part by the Institute for

Research in Fundamental Sciences (IPM) under grant No.

CS1390-4-10 and Iranian National Elite Foundation.

REFERENCES

[1] (2007) Semiconductor industry association, international technology
roadmap for semiconductors. [Online]. Available: http://www.itrs.net/

[2] A. Chandrakasan, W. Bowhill, and F. Fox, Design of high-performance
micro-processor circuits. IEEE press, 2001.

[3] O. Assare, H. Izady Rad, M. Momtazpour, E. Sanaei, and M. Goudarzi,
”VAREX: A Post-P&R Variability Modeling Framework for Multiproces-
sor SoCs,” IEEE/ACM ICCAD Workshop on Variability Modeling and
Characterization (VMC), San Jose, CA, November 2011.

[4] H. Chang and S. S. Sapatnekar, Full-chip analysis of leakage power under
process variations, including spatial correlations, in Proc. Des. Autom.
Conf., 2005, pp. 523528.

[5] S. Chandra, K. Lahiri, A. Raghunathan, and S. Dey, ”Considering
process variations during system-level power analysis,” Proceedings of
the International Symposium on Low Power Electronics and Design
(ISLPED), pp. 342-345, Oct. 2006.

[6] R. Teodorescu and J. Torrellas, ”Variation-aware application scheduling
and power management for chip multiprocessors,” 35th International
Symposium on Computer Architecture (ISCA), pp. 363-374, June 2008.

[7] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J.
Torrellas, ”VARIUS: A model of process variation and resulting timing
errors for microarchitects,” in IEEE Transactions on Semiconductor
Manufacturing, February 2008.

[8] T. Karnik, S. Borkar, and V. De, ”Probabilistic and variation-tolerant
design: Key to continued Moores law,” ACM/IEEE TAU Workshop on
Timing Issues in the Specification and Synthesis of Digital Systems, Feb.
2004.

[9] P. Ribeiro and P. Diggle, The geoR Package [Online]. Available:
http://www.est.ufpr.br/geoR

[10] R Development Core Team. R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, Austria,
2007.

[11] The NanGate 45nm Open Cell Library: An Open source standard cell
library. [Online]. Available: http://www.nangate.com/

[12] S. Mukhopadhyay and K. Roy, ”Modeling and estimation of total
leakage current in nano-scaled CMOS devices considering the effect of
parameter variation,” in Proc. Int. Symp. Low Power Electron. Des., 2003,
pp. 172-175.

[13] S. Narendra, V. De, S. Borkar, D. Antoniadis, and A. Chandrakasan,
”Full-chip sub-threshold leakage power prediction model for sub-0.18 in
CMOS,” in Proc. Int. Symp. Low Power Electron. Des., 2002, pp. 19-23.

[14] A. Agarwal, K. Kunhyuk, and K. Roy, ”Accurate estimation and
modeling of total chip leakage considering inter- & intra-die process
variations,” in Proc. Int. Conf. Comput.-Aided Des., 2005, pp. 736-742.

[15] H. F. Dadgour, S. Lin, and K. Banerjee, ”A Statistical Framework for
Estimation of Full-Chip Leakage-Power Distribution Under Parameter
Variations,” IEEE Transactions on Electron Devices, Vol 54, No. 11, pp.
2930-2945, Nov. 2007.

[16] N. C. Beaulieu, A. A. Abu-Dayya, and P. J. McLane, ”Comparison
of methods of computing lognormal sum distributions and outages for
digital wireless applications,” in Proc. IEEE Int. Conf. Commun., 1994,
pp. 1270-1275.

[17] R. Chau, S. Datta, M. Doczy, J. Kavalieros, and M. Metz. ”Gate
dielectric scaling for high-performance CMOS: from SiO2 to High- K,” In
Extended Abstracts of International Workshop on Gate Insulator (IWGI),
Nov. 2003, pp. 124-126.

[18] OpenRISC 1200, [Online]. Available:
http://opencores.org/openrisc,or1200.

[19] R. X. Gu and M. I. Elmasry: ”Power Dissipation Analysis and Opti-
mization of Deep Submicron CMOS Digital Circuits,” IEEE J. Solid-State
Circuits, May 1996, vol. 31, pp. 707-713

[20] R. Rao, A. Sirvastava, D. Blaauw, and D. Sylvester, ”Statistical Analysis
of Sub-threshold Leakage Current for VLSI Circuits”, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, VOL. 12, NO. 2,
February 2004.

[21] W. Kim, K. T. Do, and Y. H. Kim, ”Statistical Leakage Estimation Based
on Sequential Addition of Cell Leakage Currents,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, Vol. 18, No. 4, Apr. 2010,
pp. 602-615.

[22] W. Liu, K. M. Cao, X. Jin, X. Xi, and C. Hu,
BSIM4.2.0 MOSFET Model - User Manual, http://www-
device.eecs.berkeley.edu/bsim3/ bsim4.html.

2512525


