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Leakage power has already become the major contributor to the total on-chip power consumption, ren-
dering its estimation a necessary step in the IC design flow. The problem is further exacerbated with the
increasing uncertainty in the manufacturing process known as process variability. We develop a method
to estimate the variation of leakage power in the presence of both intra-die and inter-die process variabil-
ity. Various complicating issues of leakage prediction such as spatial correlation of process parameters,
the effect of different input states of gates on the leakage, and DIBL and stack effects are taken into
account while we model the simultaneous variability of the two most critical process parameters, thresh-
old voltage and effective channel length. Our subthreshold leakage current model is shown to fit closely
on the HSPICE Monte Carlo simulation data with an average coefficient of determination (R2) value of
0.9984 for all the cells of a standard library. We demonstrate the adjustability of this model to wider
ranges of variation and its extendability to future technology scalings. We also present a complete frame-
work for estimation of full-chip leakage power and show that our framework which we call Leak-Gauge,
imposes little timing penalty on the system design flow and is applicable to real design cases.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

As the semiconductor technology scales into ever deeper re-
gimes, power dissipation asserts its dominance as one of the most
critical design metrics. The increase in dynamic power consump-
tion is usually compensated for by down-scaling of the supply volt-
age. This scaling necessitates a decrease in transistor threshold
voltages to maintain their switching speed and chip performance.
As a result and due to its exponential dependence on threshold
voltage, leakage power has emerged as the main contributor to
the total on-chip power dissipation [1,2]. Leakage current is also
exponentially dependent on transistor critical dimensions which
are rapidly scaling down as the technology moves towards one-di-
git-nanometer nodes.

Also concomitant to the aggressive scaling of transistors is the
increased variability in manufacturing process parameters, specif-
ically transistor threshold voltage and critical dimensions such as
effective channel length. The strong dependence of leakage power
on these varying parameters renders it as an essentially random
variable. Traditional worst case corner-based approach has proved
too pessimistic, making it inevitable to move toward statistical
estimation methods in order to obtain detailed and accurate infor-
mation on the behavior of leakage power. Research efforts made in
this direction in the past few years have produced fast and rela-
tively accurate leakage estimation methods that can be used
through the design flow. However, the lack of a late-in-the-de-
sign-process framework that could provide the levels of accuracy
needed in a sign-off tool is more sensed as leakage power becomes
more and more critical. Focusing on estimation accuracy, in this
paper, we introduce Leak-Gauge, a leakage estimation framework
aimed at the late stages of design flow.

Our main contributions may be summarized as follows:

� We develop a novel, variation-aware leakage current model by
examining all major considerations at the transistor level in
order to enable highly accurate characterization of standard
cells. To the best of our knowledge, Leak-Gauge is the first
framework that considers both the major sources (Vth and Leff)
and types (intra-die and inter-die) of process variation while
addressing other complicating issues such as DIBL effect. The
model is also highly flexible in terms of the level of the accuracy
it provides and can be adjusted to handle further technology
scalings by choosing the appropriate degree of approximation.
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� We propose a complete framework for estimation of full-chip
leakage power distributions in presence of process variation.
While as a late-mode estimation framework, we primarily aim
for accuracy and use a Monte Carlo based approach as opposed
to popular statistical methods, the components of the frame-
work are designed in a way that only a minimal timing penalty
is imposed on the flow of system design. Moreover, the data-
and task-parallelism present in our method which enable its
implementation in parallel computing machines and its linear
computation complexity make it scalable enough to be used
for larger designs in future technologies.

Fig. 1 shows an overview of our leakage estimation framework
and when each stage is performed in relation to the traditional de-
sign steps. Leak-Gauge consists of four components: Cell Character-
ization, Variation Map Generation, Probability Calculation, and
Leakage Estimation. Cell Characterization is performed to develop
variation-aware leakage models for standard library cells by actual
measurements or HSPICE simulations. The exact formulations of
cell leakage variation models and the procedures for obtaining
them will come in Section 3. To capture the combined effect of
both die-to-die and within-die variations, variation maps are gener-
ated in Variation Map Generation module. Separate maps are cre-
ated for each process parameter, each map representing the
variability in a process parameter across the surface of a sample
die. Signal and input state probabilities of circuit nodes are com-
puted in Probability Calculation step which can be performed right
after circuit synthesis. More details on the generation of variation
maps and the process parameter models used as well as signal
probability calculation and its effect on leakage power will come
in Section 4. Finally, Leakage Estimation stage (box number 4 in
Fig. 1) takes four inputs: (1) cell leakage models produced by Cell
Characterization module, (2) variation maps produced by Variation
Map Generation module, (3) state probabilities produced in Proba-
bility Calculation step, and (4) the final layout of the chip extracted
as a product of the P&R stage, and produces final leakage power
distribution as the framework outputs.

This paper is an extension to the work presented in [4]. The
extension includes:

� The effect of input combinations on the leakage power of indi-
vidual CMOS cells as well as large circuits is investigated.
Fig. 1. Overview of our variabi
� A new module called Probability Calculator is added to the
framework to account for this phenomenon. While this module
introduces almost no added timing penalty, it greatly improves
the accuracy and reliability of the framework.
� Extended experiments incorporating this new module have

been performed and more detailed results are presented and
discussed in the Experimental Results section.

The remainder of the paper is organized as follows. First, Sec-
tion 2 provides a survey of the previous related work. We then con-
tinue, in Section 3, with constructing a model for analyzing the
simultaneous effect of threshold voltage and effective channel
length variations on leakage current of a cell, and explain how
we use the model for characterization of standard library cells. Sec-
tion 4 describes the probability calculator module, our process var-
iation model, and the procedures used for Monte Carlo
experiments to derive final leakage distributions. We present an
evaluation of the accuracy and performance of our framework in
Section 5 and compare it to another well-known approach. We
conclude our discussion in Section 6.
2. Related work

The methods for estimating the effect of process variation on
power consumption used in previous research can be divided into
two categories. Monte Carlo based approach is often taken too
strictly [18] and includes extensive complex computations which
require long simulation times. The majority of the works have,
however, focused on the Wilkinson’s Method (WM) as the most
effective approach for approximating the sum of lognormal distri-
bution functions [22,21,28,20,27,9]. These methods exchange the
accuracy of Monte Carlo method with reduced estimation time
and computation complexity. A third approach, recently intro-
duced in [10], makes statistical leakage estimation even faster by
exploiting the spatial correlation property of leakage power while
maintaining the same levels of accuracy as WM-based methods.
We take a hybrid approach where we first develop a simple model
for estimation of the leakage current of standard library cells and
then use Monte Carlo experiments to obtain full-chip leakage
power distribution. This results in a highly accurate method while
keeping run-times at acceptable levels.
lity modeling framework.
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In order to be satisfactorily accurate, a variation model must
take various considerations into account. Several works on statisti-
cal power analysis and estimation have investigated these con-
cerns. However, none have presented a comprehensive
framework that could address all issues simultaneously, and are
thus not accurate enough. Three distinct deficiencies could be ob-
served in the existing estimation methods. A majority of them do
not consider inter-die (die-to-die) variations (i.e. the difference in
process parameters of identical chips within a wafer) [18], intra-
die (within-die) variations (i.e. the difference in process parame-
ters of identically designed transistors within a die) [20], or the
spatial correlation of process parameters among proximate cells
[27,18]. Most of the existing models do not take into account the
simultaneous effect of threshold voltage and effective channel
length on leakage current [19,27], or assume a linear relation be-
tween these parameters [21,20]. And finally, specific consider-
ations of leakage current modeling such as the effect of the input
state, or DIBL and stack effects are not taken into account in many
frameworks [20,18,28,27].

As will be discussed in the following sections, our framework
addresses all these issues and provides accurate estimations of
leakage power distribution while it is fast enough to be included
in CAD tools as a part of variation-aware chip design flow.
3. Cell characterization

3.1. Formulation

Subthreshold leakage current is considered as the main contrib-
utor to the total on-chip leakage current as rapid adaptation of
high-k gate dielectric has effectively reduced gate leakage [23].
As discussed in [26], subthreshold current of a CMOS network is
proportional to subthreshold current of one of its constructing
transistors with the proportionality constant and the specific tran-
sistor being different for each set of inputs to the gate. Thus, we can
model subthreshold leakage current of a cell with m transistors
numbered from 1 to m, corresponding to its ith set of possible in-
puts as

IsubðiÞ ¼ aðiÞ � INðiÞ
sub ; 1 6 NðiÞ 6 m ð1Þ

where a(i) and N(i) are, respectively, the proportionality constant
and the transistor number specific to the ith input set, and Ij

sub is
the subthreshold current of the jth transistor. Although [26] does
not consider process variability, its results may be extended to
our discussion of process variation. Hence, to analyze the effect of
process variation on the leakage current of a cell, it suffices to model
the leakage current of one transistor in the presence of process var-
iation for every set of inputs to the cell.

We, therefore, proceed by constructing a model for the sub-
threshold current of a transistor for analyzing the simultaneous
variability in Vth and Leff. The model will have the general form of
y = f(x1,x2) where y symbolizes the subthreshold current, f(�) repre-
sents its dependence on the variability in threshold voltage and
effective channel length and x1 and x2 characterize this variability.
The remainder of this section explains how we choose x1, x2, and
the function f(�). For function f(�) to be derivable in a closed form,
random variables x1 and x2 must meet the following two
conditions:

� They must, jointly, include all variation sources that change
threshold voltage and effective channel length.
� They must be statistically uncorrelated; i.e. a single variation

source must not change both of them simultaneously.
According to BSIM4 device model [29], effective channel length
of a transistor is modeled independent of threshold voltage. There-
fore, we can choose x1 = Leff without violating the second condition
mentioned above. Moreover, x1 will naturally include all the varia-
tion sources that change the effective channel length, working to-
wards meeting the first condition. Threshold voltage, on the other
hand, is not independent of channel length. Hence, we cannot as-
sign it to x2. We must differentiate between channel-length-depen-
dent threshold voltage variations (variations in threshold voltage
stemming from variations in channel length) and channel-length-
independent variations (variations in threshold voltage that are
not affected by channel length variations), and choose x2 such that
it includes all channel-length-independent variations, but no chan-
nel-length-dependent variations. This choice of x2 along with our
choice of x1 = Leff will then satisfy both conditions mentioned
above. Eq. (2) shows the BSIM4 model for threshold voltage.

Vth ¼ VTH0þ DVthðSCE;DIBLÞ þ DVthðDopantÞ
þ DVthðNarrow WidthÞ ð2Þ

Here, VTH0 is the threshold voltage of the long channel device at
zero substrate bias, DVth(SCE,DIBL) is the change in threshold volt-
age due to short channel and DIBL effects, DVth(Dopant) is the
change in threshold voltage due to non-uniform substrate doping,
and DVth(Narrow_Width) is the change in threshold voltage due to
the decrease in channel width.

Variations in threshold voltage can, therefore, be contributed to
variations in the components of (2). We should, then, examine each
component’s dependency on channel length to identify it as either
a channel-length-independent or channel-length-dependent varia-
tion source. DVth(SCE,DIBL) varies exponentially with Leff and is
clearly a channel-length-dependent variation source. DVth(Dopant)
models the non-uniformity of dopant concentrations in both verti-
cal and lateral directions.

DVthðDopantÞ ¼ DVthðVerticalÞ þ DVthðLateralÞ ð3Þ

DVth(Vertical) is completely independent of channel length render-
ing it as a channel-length-independent variation source. Non-uni-
form doping concentration in lateral direction will, on the other
hand, result in greater Vth roll-ups in short-channel devices resem-
bling the Leff-dependent nature of DVth(Lateral). However, compared
to the exponential dependency of DVth(SCE,DIBL) on channel length,
we can safely neglect the weak dependency of DVth(Lateral) on Leff

and place this component in the channel-length-independent cate-
gory as well. Therefore, while DVth(Dopant) covers Random Dopant
Fluctuations (RDF) as the main source of variation in threshold volt-
age, it does not include any channel-length-dependent variations.
Finally, DVth(Narrow_Width) changes threshold voltage in two ways
as shown in (4).

DVthðNarrow WidthÞ ¼ DVthðNarrow Width1Þ
þ DVthðNarrow Width2Þ ð4Þ

As channel width increases, the depletion region underneath the
fringing fields becomes comparable to the depletion layer formed
from the vertical field, and this in turn increases the threshold volt-
age. Using BSIM4 notation, we call this DVth(Narrow_Width1) and
represent the change in threshold voltage due to the width effect
for small channel lengths with DVth(Narrow_Width2). According to
[29], DVth(Narrow_Width1) and DVth(Narrow_Width2) are, respec-
tively, completely independent and exponentially dependent on
effective channel length. Thus, the two terms correspond to chan-
nel-length-independent and channel-length-dependent variations
respectively.

To summarize our discussion of threshold voltage variation
sources, we can rewrite (2) as
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Fig. 2. The dependency of threshold voltage on effective channel length over a wide
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Vth ¼ VTH0þ DVthðCLIÞ þ DVthðCLDÞ ð5Þ

where

DVthðCLIÞ ¼ DVthðDopantÞ þ DVthðNarrow Width1Þ ð6Þ

DVthðCLDÞ ¼ DVthðSCE;DIBLÞ þ DVthðNarrow Width2Þ ð7Þ

It is now clear that choosing x2 = DVth(CLI) together with our choice
of x1 = Leff satisfies both conditions mentioned for the independent
variables of our model. We now proceed to determine the
function f(�). To this end, we first express leakage current as
functions of each model parameter (i.e. Vth and Leff) separately. In
other words, we first choose the two functions f1(x1) = f(x1,x2 = c)
and f2(x2) = f(x2 = c,x2). Then, considering the fact that the final
model must preserve the behavior expressed in these two functions
in cases where one parameter is held fixed, we propose the leakage
current model as a product of these two functions.

Based on BSIM4 device model [29], subthreshold leakage cur-
rent of a transistor can be expressed as

Isub ¼ I0 � exp
Vgs � Voff � Vth

nVT

� �� �
� 1� exp

�Vds

VT

� �� �
ð8Þ

where I0 is the nominal subthreshold current, VT is the thermal volt-
age, Voff is the offset voltage which determines the channel current
at Vgs = 0, and n is the subthreshold swing factor. Therefore, for a gi-
ven set of voltages on its terminals, subthreshold current of a tran-
sistor as a function of Vth can be modeled as

Isub ¼ C1 � expðC2 � VthÞ ð9Þ

where

C1 ¼ I0 � exp
Vgs � Voff

nVT

� �
� 1� exp

�Vds

VT

� �� �
ð10Þ

C2 ¼ �
1

nVT
ð11Þ

Substituting (5) in (9) gives

Isub;V ¼ C1 � exp½C2 � ðVTH0þ DVthðCLIÞ þ DVthðCLDÞÞ� ð12Þ

now, by considering constant Leff, we obtain

Isub;V ¼ C 01 � expðC2 � DVthðCLIÞÞ ¼ C 01 � exp ðC2 � VTHÞ ð13Þ

where

C 01 ¼ C1 � exp½C2ðVTH0þ DVthðCLDÞÞ� ð14Þ

and VTH is the simple notation we will use for channel-length-inde-
pendent variation in threshold voltage in our final model and in the
remaining of the paper. Since this model works in situations where
Leff is held fixed (x1 = c), it may serve as our f2(x2) function.

To find subthreshold leakage as a function of Leff, we can substi-
tute Vth in (9) with a function describing its dependency on Leff.
However, since it is not possible to analytically find such a func-
tion, we can approximate it with a polynomial function of Leff to
obtain

Isub;L ¼ q0 � exp
Xn

i¼1

qi � ðLeff Þi
 !

ð15Þ

where qis are fitting parameters and n is the degree of approxima-
tion. Since this model works in situations where Vth is held fixed
(x2 = c), it may serve as our f1(x1) function. Now that we have chosen
f1(x1) and f2(x2), we propose to form the final model as f(x1,x2) = f1(-
x1) � f2(x2) which gives

Isub ¼ c � exp p0 � VTH þ
Xn

i¼1

pi � ðLeff Þi
 !

ð16Þ
where c, and pis are coefficients to be determined based on
actual leakage values. As mentioned earlier, note that although
(16) is essentially a model for subthreshold current of a single
transistor, we may use it to model the current of a cell as well.
This is based on the results of [26] that the subthreshold current
of a cell is proportional to the current of one of its constructing
transistors. Therefore, we can fit (16) on the leakage values of a
cell, merging the proportionality constant (expressed in our cell
leakage model (1) as a(i)) with the coefficient c in (16).
However, it should be noted that the coefficients of (16) must
be chosen for each set of inputs to the cell separately. In other
words, we will have a separate subthreshold current model for
each input set.

3.2. Characterization

Note that n in (15) must be chosen based on the technology
node under study. Fig. 2 illustrates the dependency of threshold
voltage on effective channel length over a wide range of Leff

values shown in meter. It can be observed that while a quadratic
or even a linear approximation function of Leff to model Vth may
be acceptable for 45 nm and above technologies, the increased
scaling of transistor dimensions and wider variability range
of future technologies make more accurate approximations
necessary. As shown in Fig. 1, in this step, leakage current
models are constructed for all the cells of a standard library.
We propose guidelines as to how the coefficients of (16) should
be determined. Being independent of the specific design, this
step can be performed in parallel to, or even before the
placement and routing, imposing no timing penalty on the chip
design flow. Moreover, this step needs to be performed only
once, and all the designs based on the characterized library
may use its results.

To determine the coefficients of (16), we only need n + 2
accurate leakage values, n being the degree of approximation
as introduced in (15). These values can be obtained through
either actual measurements or transistor-level simulations with
n + 2 sets of doping concentration and channel length values
preferably scattered across the desirable range of parameter
variations. We will, then, have n + 2 ordered triples, (I1,VTH1,L1)
through (In+2,VTHn+2,Ln+2), which when substituted in (16), will
provide us with a system of n + 2 equations. Dividing all equa-
tions by one of them, say the first one, and taking log of both
sides will result in a system of n + 1 linear equations (I = AP)
where A, P, and I are defined as
range of Leff variations.
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Therefore, pis can be calculated as

pi ¼
jAij
jAj ; 0 6 i 6 n

where Ai is the matrix formed by replacing the ith column of A by
the column vector I. Then, replacing these values in the first equa-
tion will give c as

c ¼ I1

exp p0 � VTH1 þ
Pn

i¼1pi � ðLeff Þi
� �

These coefficients, which are determined for all the cells in the stan-
dard library, are then used in the ‘‘Variability Analysis’’ stage which
is explained next.

4. Variability analysis

In this section, we discuss the impact of input combinations on
individual cell and full-chip leakage power, explain the process
variation model used in this work, and describe the procedures
used to obtain final leakage power distributions.

4.1. Input combination probabilities

Due to the well-known stack effect and its input pattern depen-
dence, leakage power of CMOS cells vary considerably for different
input sets [21]. Table 1 shows the maximum to minimum ratio of
leakage power for a number of cells in a standard library [17]. Judg-
ing from these values, the leakage power of a CMOS circuit can be
strongly dependent on the signal probability of its nodes. There-
fore, it is essential for a leakage estimation framework to include
an accurate signal probability approximation module. Fig. 3 shows
the total leakage power of our simple OperRISC processor core,
normalized to nominal, variation-free values (details in Section 5),
for different input signal probability values. With this design as an
example, it should be noted that although a majority of actual de-
Table 1
Maximum to minimum ratio of leakage power for some of the cells in a standard
library for different input sets.

Cell name DFF_X1 INV_X4 AND2_X4

MAXðLeakageÞ
MINðLeakageÞ

7.2 5.2 5.4

Cell name INV_X2 INV_X1 INV_X8

MAXðLeakageÞ
MINðLeakageÞ

7.5 7.3 4.0

Cell name AND2_X1 AND2_X2 NAND2_X2

MAXðLeakageÞ
MINðLeakageÞ

5.0 6.9 5.4
sign cases are large enough that this input dependency phenome-
non is averaged off, the wide spread of leakage values across input
combinations and, hence, the possibility of considerable impact of
input patterns cannot be overlooked.

Input set probabilities can be computed using the signal proba-
bilities of circuit nodes which may be obtained in a variety of ways.
Examples are the algorithms presented in [12–14]. The choice of a
specific algorithm must be made according to the design on which
the framework is being applied. However, it should be noted that
since only a circuit netlist (and not the circuit placement) is needed
to obtain these probabilities, this step may be performed prior to
the placement and routing stage and does not contribute to the
timing overhead of the framework (see Fig. 1).

4.2. Process variation model

Similar to [6–8], we model the random and systematic compo-
nents of both die-to-die (D2D) and within-die (WID) variations as
zero-mean normal distributions. Therefore, each process parame-
ter is modeled as a random variable as shown in (17) and (18) with
four Gaussian independent components that correspond to sys-
tematic D2D variation, random D2D variation, systematic WID var-
iation and random WID variation.

Ndep ¼ n0 þ nsys d2d þ nrnd d2d þ nsys wid þ nrnd wid ð17Þ
Leff ¼ l0 þ lsys d2d þ lrnd d2d þ lsys wid þ lrnd wid ð18Þ

Here, n0 and l0 are nominal values of doping concentration and
effective channel length and the remaining terms represent the four
random variables named above. As in [11], we assume that each of
the mentioned components contribute equally to the total varia-
tion. VTH values corresponding to each variation-included Ndep va-
lue are obtained using equations in [29]. We use geoR [15],
geostatistical analysis package of R [16] to generate large numbers
of different sets of WID and D2D variation maps for each of the pro-
cess parameters while taking spatial correlation of the effective
channel length into account. A variation map reflects the amount
of variation in a process parameter across the surface of the die.
Similar to [8], we use the spherical function (19) to incorporate spa-
tial correlation of the effective channel length.

qðrÞ ¼ 1� 3r
2Uþ r3

2U3 r 6 U

0 otherwise

(
ð19Þ



Table 2
Process parameters with respective mean and variance values.

Parameter Mean (l) Variance (3r/l) (%)

Vth 180 mV 30
Leff 17.5 nm 15
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Here, q(r) is the correlation function, r is the distance between two
points on the die, and U is the Range, the distance between two
points where they will be no longer correlated. We then divide
the die area into regions of area ARegion. ARegion is chosen such that
the correlation function q(r) would not change considerably across
each region.

4.3. Full-chip leakage estimation

After the characterization stage where leakage models for each
input set of a cell are constructed using (16), we form the final
leakage model of a cell with n input nodes as

Icell
sub ¼

X2n

i¼1

Pi � IsubðiÞ ð20Þ

where Pi is the probability of the occurrence of the ith input set, and
Isub(i) is the leakage model of the ith input set as introduced in (1).

As illustrated in Fig. 1, this step is performed right after the
placement-and-routing stage of the design when the positions of
all the cells of the chip are determined. The total leakage power
consumption of a chip is calculated using a summation of the leak-
age values of all its constructing cells. After the placement and
routing stage, the positions of the cells can be extracted from the
final layout of the design. For each variation map, the value of each
transistor parameter may be determined for all the cells. These val-
ues may then be used to calculate the total leakage power of the
chip. This process, when performed for all variation maps in a ser-
ies of Monte Carlo experiments, provides us with an accurate esti-
mation of leakage power consumption in presence of process
variation.

5. Experimental results

In this section, we investigate the accuracy and timing perfor-
mance of our framework and compare it to the widely used Wil-
kinson’s Method as a representative of the related work. We
evaluate our framework against transistor level HSPICE simulation
data to verify its accuracy and apply it to a real design to examine
its imposed timing overhead over the system design flow. We fur-
ther present a complexity analysis of our framework to evaluate its
scalability and practicality of its application to larger designs.

5.1. Accuracy evaluation

We evaluated our leakage current model by fitting it on leakage
values generated by HSPICE simulation and analyzing the resulting
goodness-of-fit measures. Note that since we use no approximations
for deriving final leakage power distributions from these models, our
evaluation of the accuracy of them serves as the evaluation of our var-
iability modeling framework as a whole. In other words, assuming
the accuracy of the process variation parameters and our leakage
models, our approach to finding the leakage power distributions
(Monte Carlo experiments of calculating leakage values for each
variation map) closely resembles a practical scenario in which
one would form a distribution of leakage power consumption of
a set of chips by measuring their actual leakage currents after fab-
rication. Furthermore, our approach would nullify the inaccuracies
inherent to measuring devices by calculating the full-chip leakage
as a mathematical summation of cell leakages. With these argu-
ments as the justifications for our evaluation method, we proceed
to evaluate the accuracy of our leakage model.

Similar to [27], we set n in (16) to 2. We show that this is suf-
ficient for our 45-nm library, but note that a higher degree of
approximation may be needed for more scaled technologies. Our
subthreshold current model would then be formed as
Isub ¼ c � expðp0 � VTH þ p1 � Leff þ p2 � ðLeff Þ2Þ ð21Þ

We used 18 most common cells of Nangate Open Cell Library [17],
and ran 1000 simulations per cell per input set. Table 2 summarizes
the process parameters corresponding to 45 nm technology. We
stored corresponding VTH and leakage current values obtained from
the formulas in [29] and HSPICE simulations. Finally, we used MAT-
LAB surface fitting tool for the process of non-linear multivariate
regression and determining goodness-of-fit measures. Fig. 4 and Ta-
ble 3 show the results of the fitting process for a 2-input NAND cell
as an example. In Table 3, SSE, R-square and RMSE correspond to
Sum of Squares Due to Error, Coefficient of Determination, and Root
Mean Squared Error respectively. SSE measures the total deviation
of the response values from the fit to the response values. A value
closer to 0 indicates that the model has a smaller random error
component, and that the fit will be more useful for prediction. R-
square, the coefficient of determination, measures how successful
the fit is in explaining the variation of the data. It can take on any
value between 0 and 1, with a value closer to 1 indicating that a
greater proportion of variance is accounted for by the model. For
example, an R-square value of 0.8234 means that the fit explains
82.34% of the total variation in the data about the average. RMSE
is known as the fit standard error and the standard error of the
regression. It is an estimate of the standard deviation of the random
component in the data. Just as with SSE, an RMSE value closer to 0
indicates a fit that is more useful for prediction [25]. As evident in
the figures and the goodness-of-fit measures, the model fits closely
onto the HSPICE simulated leakage values and is robust enough to
account for DIBL and stack effects. Table 4 lists the corresponding
coefficient of determination for each cell. The mean coefficient of
determination (R2) of our model for all the used cells in the standard
library is 0.9984 with a minimum of 0.9953 at the worst case indi-
cating the good accuracy of the model. As stated before, we perform
Monte Carlo experiments to derive final leakage distributions by
summing the leakage values calculated using these models, and
there exists no other approximations or error sources in the frame-
work. Hence, we have demonstrated the accuracy of our framework
by verifying the accuracy of our cell leakage models.
5.2. Performance evaluation

We applied our framework to a real design to measure its im-
posed timing overhead. Note that the three components of Cell
Characterization, Variation Map Generation, and Probability Calcula-
tion can be performed off-line and in parallel or prior to the design
flow, and do not contribute to the timing overhead of our frame-
work. The overhead is measured in the Leakage Estimation stage
(more specifically in Total Leakage Calculator block in Fig. 1). The
experimented design was an OpenRISC [24] processor core. The
core was synthesized by Synopsys Design Compiler using the 18
cells listed in Table 4 and placed and routed by Cadence Encounter.
The resulting layout consisted of around 15 k standard cells and
occupied a die area of 200 � 200 lm2. Signal and input combina-
tion probabilities were computed using an algorithm based on
[14]. The same process variation values described in Table 2 were
used and a set of 900 variation maps were produced using the
method described in Section 4.1 with a U value of 0.5 and ARegion

value of 0.5 � 0.5 lm2. The timing overhead was a nominal 1.91 s
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Fig. 4. Fitting results of our current leakage model on the HSPICE simulation data. Input sets: (a) 00, (b) 01, (c) 10, and (d) 11.

Table 3
Goodness-of-fit measures of our current leakage model for a 2-input NAND cell.

Input sets SSE R-square RMSE

00 1.955e�16 0.9996 4.43e�10
01 3.78e�16 0.9999 6.161e�10
10 5.305e�16 0.9999 7.298e�10
11 1.74e�17 0.9999 1.322e�10

Table 4
Coefficient of determination values for the 18 cells used for the evaluation of our
model and implementation of OpenRISC.

Cell Name DFF_X1 INV_X4 CLKBUF_X1

R2 0.9953 0.9988 0.9995
Cell Name INV2_X2 INV2_X1 INV_X8

R2 0.9996 0.9982 0.9984
Cell Name AND2_X1 AND2_X2 NOR2_X2

R2 0.9979 0.9983 0.9963
Cell Name XOR2_X1 AND2_X4 NAND2_X2

R2 0.9993 0.9992 0.9998
Cell Name DLH_X1 NAND2_X1 MUX2_X1

R2 0.9972 0.9997 0.9984
Cell Name BUF_X1 DLL_X1 BUF_X2

R2 0.9997 0.9972 0.9984
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on a 1.73 GHz Intel Core 2 Duo machine with 2.00 GB RAM and
running 32-bit Windows 7. Since the computation complexity of
our method is O(N) where N is the number of cells in the design,
it can be inferred that our method would impose a timing penalty
of around 1900 s (32 min) for a typical 15 million-cell design which
demonstrates the practicality of its usage in real world
applications.
5.3. Comparison with previous methods

At the heart of most statistical approaches to leakage power
variability analysis lies the Wilkinson’s Method, a well-known ap-
proach to approximate the sum of log-normals. This method is
used to approximate the mean and standard deviation (SD) of
the full-chip leakage power distribution using mean and SD values
of individual standard cells. Most related works have focused on
reducing the timing complexity of this method while trying to
maintain its accuracy. Our approach is fundamentally different,
in that it forms the desired leakage distribution by point-by-point
mathematical summation of cell leakage values. In this subsection,
we present a comparison of the accuracy and scalability of our
framework with this method as a representative of related work.
We show that Wilkinson’s Method, even without timing optimiza-
tions which inevitably reduce its accuracy, is not accurate enough
for variation-aware leakage estimation of aggressively scaled
technologies.

5.3.1. Accuracy
Our Monte Carlo approach ensures that our method is superior in

terms of accuracy assuming both methods use the same cell leakage
models and input combination probabilities. This is because we use
no approximations for calculating the final leakage distributions.
Therefore, to examine the level of inaccuracy in Wilkinson’s Meth-
od of summing log-normals, we implemented this method and
used it to estimate the leakage power distribution of our OpenRISC
design. Note that since we used the same cell leakage models as
the input to Wilkinson’s Method, the difference between its results
and those obtained from our framework reflect the error intro-
duced by Wilkinson’s Method with respect to a purely Monte Carlo
approach. Fig. 5 shows the final normalized leakage distributions
derived from our framework and Wilkinson’s Method for three in-
put signal probability values of 0.25, 0.5, and 0.75. While the mean
and SD values estimated by Wilkinson’s Method are relatively
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Fig. 5. Leakage power distribution of OpenRISC processor core using Wilkinson’s method and our framework. From top to bottom, starting signal probability: 0.25, 0.5, 0.75.
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accurate, with respectively 2.1% and 3.4% average errors with re-
spect to our Monte Carlo based approach, the assumption that
the full-chip leakage distribution follows a log-normal pattern
introduces larger errors. As an example of possible errors in prac-
tical applications, we compared the leakage-yield (i.e. the percent-
age of chips consuming no more leakage power than a specified
leakage power constraint) of our OpenRISC design estimated by
both methods. Table 5 shows these values and their difference
Table 5
Leakage-yield values of Wilkinson’s method and Leak-Gauge for Three different input sign

Leakage constraints Input signal probabilities

0.25 0.5

WM (%) LG (%) Error (%) WM (%)

1.1 49 51 3.9 50
1.2 53 57 7.0 54
1.3 56 62 6.4 58
1.4 61 65 6.1 62
1.5 63 70 10 65

Average – – 6.7 –
for various leakage power constraints. The constraints in the first
column are expressed in relation to the nominal, variation-free
leakage power estimate. WM, LG, and Error columns correspond,
respectively, to the leakage yield predicted by Wilkinson’s Method,
leakage yield computed by our framework, and the error of the
estimation performed by Wilkinson’s Method with respect to our
Monte Carlo approach. These results show that for all three input
signal probability values, the Wilkinson’s Method keeps unaccept-
al probabilities.

0.75

LG (%) Error (%) WM (%) LG (%) Error (%)

53 5.7 51 55 7.3
58 6.7 55 59 6.8
63 7.9 60 64 6.2
67 7.5 63 69 8.7
71 8.4 67 72 6.9

– 7.2 – – 7.2
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able errors in approximating leakage-yield. This can be attributed
to this method’s simplifying assumption that the final distribution
is a pure log-normal. As indicated by our results in Table 5, this
assumption may be inaccurate especially in cases where there ex-
ists high levels of spatial correlation between process parameters.
Our approach eliminates this possible inaccuracy by forming the fi-
nal distribution using mathematical summations of cell leakage
values.

5.3.2. Scalability
To approximate the distribution of the sum of log-normals, Wil-

kinson’s Method assumes another log-normal as the resulting dis-
tribution and matches its first and second momentums with those
of the distribution of the sum of log-normals as shown in the fol-
lowing equations.

eY
1 þ eY

2 þ . . .þ eY
n � eZ

l1 ¼ E eY
1 þ . . .þ eY

n

� 	
¼ elZþr2

Z=2 ¼
Xn

i¼1

elYiþr2
Yi
=2

l2 ¼ E eY
1 þ . . .þ eY

n


 �2
h i

¼ e2lZþ2r2
Z

¼
Xn

i¼1

e2lYiþ2r2
Yi þ 2

Xn�1

i¼1

Xn

j¼iþ1

e
lYiþlYjþ r2

Yi
þr2

Yj
þ2qijrirj

� �
=2

where qij is the correlation coefficient of Yi and Yj. Then, mean and
standard deviation would be obtained as:

mZ ¼ 2lnl1 �
1
2

lnl2

r2
Z ¼ lnl2 � 2lnl1

It is easy to infer that the computation complexity of this method is
O(N2) where N is the number of log-normals to be summed (i.e. the
number of cells in our case) while our approach results in a com-
plexity of O(N). Of course, there have been several attempts to re-
duce this complexity. Chang and Sapatnekar [5] proposed a
method to decrease the computation complexity of Wilkinson’s
Method to O(n2) where n is the number of grids used in variability
analysis. It is obvious that n can be significantly smaller than the
number of cells, but the quadratic complexity causes estimation
times to increase dramatically for large, real world circuits. More re-
cently, Kim et al. [28] have also proposed a method called VCA that
has a computation complexity similar to ours (O(N)). However, their
use of Wilkinson’s Method keeps the possibility of unacceptable er-
ror rates as indicated by our results in Table 5. As expected, the VCA
approach’s error rate increases with the amount of process variabil-
ity [28].

Another characteristic of Leak-Gauge that makes it increasingly
scalable is the inherent task- and data-parallelism present in its
different components that make it suitable to accelerate by run-
ning on multicore processors or cluster machines. Referring to
Fig. 1, the cell characterization and variation map generation
stages, while not contributing to the design time overheads, can
be easily partitioned as parallel tasks to be performed on multiple
processor cores. More importantly, the timing-critical phase of the
framework which takes place in the leakage and variation estima-
tion stage is highly data-parallel in nature. In fact, this stage can be
viewed as a single summation reduction operation making the
framework readily suitable in a parallel computing environment.

In summary, our framework has a lower or equal complexity
compared to other leakage estimation methods while it is more
accurate as it uses no approximations in forming the final distribu-
tions. Furthermore, our transistor level analysis of cell leakage
power provides us with more accurate cell leakage models as
shown in the previous subsection and renders our framework even
more accurate.

6. Conclusion

We presented Leak-Gauge, a late-mode, variation-aware leak-
age power estimation method which is used as a part of our vari-
ability modeling framework [3]. We developed a subthreshold
leakage current model and demonstrated its reliability through
comparison of its predictions with HSPICE simulation data. We
showed how our model could be adjusted for wide ranges of pro-
cess variation and scaled transistor dimensions in future deep sub-
micron regimes by choosing the degree of Vth � Leff dependency
approximations. Through using a combination of Monte Carlo
experiments and our developed leakage model, we could achieve
high accuracy while maintaining an acceptable timing penalty im-
posed by the variability analysis procedures.
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