
Accurate Estimation of Program Error Rate
for Timing-Speculative Processors

Omid Assare

University of California, San Diego

Department of Computer Science and Engineering

La Jolla, CA, USA

omid@ucsd.edu

Rajesh Gupta

University of California, San Diego

Department of Computer Science and Engineering

La Jolla, CA, USA

rgupta@ucsd.edu

ABSTRACT
We propose a framework that estimates the error rate experienced

by an application as it runs on a timing-speculative processor. The

framework uses an instruction error model that is comparable in

accuracy to low-level simulations—as it considers the effects of

operand values, preceding instructions, datapath configuration,

and error correction scheme, as well as process variation, includ-

ing its spatial correlation property—and yet efficient enough to

allow its application in Monte Carlo experiments to characterize

large program input datasets. We then use statistical limit theo-

rems to estimate program error rate and quantify the effect of

inter-instruction correlations.

1 INTRODUCTION
Timing-speculative (TS) processors [11] allow increasing the fre-

quency or decreasing the voltage beyond the limits determined by

static timing analysis (STA), thereby removing pessimistic safety

margins that conventional processors require to prevent timing

errors. Instead, they rely on circuit- and microarchitecture-level

techniques to detect and recover from potential timing errors. For

timing speculation to be effective, the performance and/or energy

improvements gained from eliminating the safety margins must

outweigh the cost of detecting and correcting timing errors. While

these costs have been an obstacle to adoption of timing speculation

in commercial designs [24], they have been steadily decreasing

over the past decade—from 44 additional transistors per flip-flop

for detection and dozens of clock cycles for correction in the first

Razor design [11], to only three additional transistors and as few

as a single clock cycle in the latest version [24].

Motivating this work is another contributing factor hindering

broader diffusion of TS processors: complexity of their timing anal-

ysis. Since each timing error incurs a penalty for error correction,

performance of a TS processor is a function of the number of timing

errors it experiences. But conventional timing analysis techniques

are not designed to predict timing errors, which requires one to

determine dynamic timing slack (DTS) on a cycle-by-cycle basis.

DTS is the unused portion of the clock cycle where all signals have

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00

https://doi.org/10.1145/3316781.3317758

already propagated through logic paths and are waiting to be cap-

tured by flip-flops at the end of the clock cycle [12]. A negative DTS

means that at least one flip-flop will capture the wrong value and

at least one timing error will occur. Once a timing error has been

predicted, its dynamic effect needs to be considered as well, because

the occurrence of a timing error can itself affect DTS by triggering

the error correction mechanism. The analysis gets more compli-

cated when process variation is taken into account. The variation

in propagation delay of gates transforms DTS from a fixed number

to a random variable. So before chips are manufactured, we might

not be able to decide whether DTS is negative or positive—and if

there will be a timing error—particularly when DTS is close to zero.

Previous work has shown that DTS is a function of the sequence

of instructions being executed. As a result, applications experience

different DTS and, consequently, different number of timing errors.

Even a single application could see different error counts when it

is run with different input vectors because DTS is a function of

instruction operands as well. To quantify the vulnerability of an

application to timing errors and its sensitivity to data and process

variations, we define error rate as the fraction of executed instruc-

tions that experience timing errors. In this paper, we introduce a

framework to estimate error rate of programs running on in-order

TS processors. We make the following contributions:

(1) We develop a dynamic timing analysis (DTA) tool that accu-

rately calculates DTS in Section 3, and an instruction error

model that predicts the likelihood that the instruction will expe-

rience a timing error in Section 4. To the best of our knowledge,

we are the first to simultaneously take into account the effects of

process variation, instruction sequence and operands, datapath

configuration, and error correction scheme.

(2) We propose a statistical approach for estimating error rate of

programs based on two well-known laws of applied statistics,

central limit theorem and Poisson limit theorem, to produce

distributions that capture the effects of data and process varia-

tions in Section 5. We then use Stein’s method [22] to establish

bounds on the approximation error, including the inaccuracy

caused by inter-instruction correlations.

2 RELATEDWORK
Graph-Based DTA. Authors in [7] have proposed a graph-based

DTA method that improves the efficiency of path-based techniques

like ours. The approach is optimized for longer simulation times,

as demonstrated in [6] where a safe, error-free operating point is

determined for the entire runtime of an application. It is not as

beneficial for TS processors where timing errors must be predicted

on a cycle-by-cycle basis to determine the error rate and consider

https://doi.org/10.1145/3316781.3317758

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Omid Assare and Rajesh Gupta

the dynamic effect of timing errors on DTS. Our framework does

not suffer from the long simulation times of other path-based tech-

niques because it performs the most time-consuming part of the

analysis—calculating DTS of the control network—only once and

only on short instruction sequences (basic blocks).

Machine Learning. There has been growing interest in us-

ing machine learning techniques to predict timing errors. Authors

in [12] use decision trees to enable the compiler to predict timing

errors. But since instruction operands are not available at compile

time, their effect is ignored. In [18], random forest trees are used to

construct timing error prediction models for functional units. Such

models could be used in place of the datapath error model in our

framework, but it is not clear if the methodology can be extended to

the control network. Moreover, since, as classifiers, these methods

predict timing errors directly, without estimating DTS, they are

not suitable for analysis of design-time uncertainty, like process

variation, that precludes deterministic prediction of timing errors.

Timing Simulation. A number of other gate-level DTA tech-

niques use timing simulations to predict timing errors [8, 15]. In

addition to long simulation times necessary, because they rely on

the simulator to perform DTA, they cannot use nondeterministic

timing models that are necessary to analyze the effect of process

variation. Our framework uses functional simulations coupled with

STA to estimate DTS. That enables us to take process variation into

account by replacing STA with statistical STA (SSTA). In fact, we

are not aware of any existing DTA technique that includes process

variation in the analysis, though the graph-based method in [7] can

be extended to do so.

3 DYNAMIC TIMING ANALYSIS
Suppose that N is a graph of the processor netlist where vertices

are gates and edges are nets of the netlist. We include flip-flops and

I/O ports in the set of gates and call them endpoints.
Definition 3.1. An ordered set of gates in N is a path if

(1) the first gate is the only endpoint in the set,

(2) each gate, except the first one, is connected to the previous

gate in the set, and

(3) the last gate is connected to an endpoint.

Definition 3.2.We say a gate is activated in a particular clock

cycle if, were the clock period sufficiently long, the net connected

to its output would eventually change its value.

Definition 3.3.We say a path is activated in a particular clock

cycle if all of its gates are activated in that clock cycle. Algorithm 1

takes the processor netlist and signal activity information (VCD)

and computes DTS of a specified pipeline stage at a given clock cycle

as timing slack of the longest activated path in that stage. Timing

slack of a path is the maximum reduction in clock period that

would not violate setup time constraint of the endpoint connected

to its last gate. Figure 1 shows how the inputs to the algorithm are

generated. To include process variation in the analysis, we replace

STA with SSTA. That complicates Algorithm 1 because all timing

slacks turn into random variables. So the path at the top of the list

of critical paths returned by function CP in lines 6 and 22 might

not be the true most-critical path. To ensure that AP includes all

activated paths that could become critical, we run the while-loop

(lines 5-20) twice where CP selects the most-critical path based on

worst-case (1st percentile) timing slacks in one and best-case (99th

Table 1: Symbols and Definitions

Symbols Definitions
N Netlist of the processor pipeline

S (N) Number of pipeline stages in N

s A stage in the pipeline, s = 0, 1, ..., S (N) − 1
E(N , s) Set of all endpoints in pipeline stage s of N
Ei A particular set of endpoints

ei A particular endpoint

P (ei) Set of all paths ending in endpoint ei
Pi A particular set of paths

pi A particular path

G(pi) Set of all gates in path pi
Gi A particular set of gates

дi A particular gate

SL(pi) Timing slack of path pi
CP (Pi) Most critical (minimum slack) path in Pi
VCD(t) Set of all activated gates in cycle t

AP (N , s, t) Set of the most critical activated paths

in stage s of N at clock cycle t

Algorithm 1: Dynamic Timing Slack Algorithm

1 Function DTS(N , s, t, VCD):
2 AP (N , s, t) ← ∅;
3 foreach ei ∈ E(N , s) do
4 Pi ← P (ei);
5 while Pi , ∅ do
6 pi ← CP (Pi);
7 Gi ← G(pi);
8 Activated ← true;
9 foreach дi ∈ Gi do

10 if дi < VCD(t) then
11 Activated ← false;
12 break;
13 end
14 end
15 Pi ← Pi − pi ;
16 if Activated = true then
17 AP (N , s, t) ← AP (N , s, t) ∪ pi ;
18 break;
19 end
20 end
21 end
22 return SL(CP (AP (N , s, t)));

Figure 1: DTA Flowchart.

Accurate Estimation of Program Error Rate
for Timing-Speculative Processors DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

percentile) timing slacks in the other. Then in line 22, instead ofCP
selecting the most critical path and SL returning its timing slack,

we combine the two functions and return the statistical minimum

of timing slacks of all paths in AP using a greedy algorithm [21]

that performs a sequence of pairwise minimum operations in an

order that would minimize the approximation error.

4 INSTRUCTION ERROR MODEL
The DTA tool described in Section 3 calculates DTS of a pipeline

stage. We define DTS of an instruction as the minimum DTS of all

pipeline stages in the clock cycle that the instruction is in that stage.

An instruction with a negative DTS will experience at least one

timing error as it moves through the pipeline. Algorithm 2 uses the

DTS of pipeline stages to calculate DTS of an instruction executed

on an in-order processor. Figure 2 shows the three components of

the instruction DTS estimation flow adopted from [3].

Algorithm 2: Instruction Dynamic Timing Slack

1 Function InstDTS(N , t, VCD):
2 returnmins=0:S (N)−1(DTS(N,s,t+s,VCD));

Control Network DTS Characterization. We start by form-

ing a control flow graph (CFG) for the program. Each time a basic

block is executed on an in-order processor, the control network, like

the logic for fetching and decoding instructions, performs the same

task. Therefore, in most cases, the same set of timing paths in the

control network are activated every time. We divide the endpoints

of the processor into two sets—the set of data endpoints includes
endpoints that hold the operands and results of instructions, in-

cluding condition codes and intermediate results like load/store

addresses, and the set of control endpoints which includes the rest of

the endpoints. We apply Algorithm 2 on the control endpoints as we

execute each basic block separately, and record DTS of all instruc-

tions. Because the instructions of two basic blocks can share the

pipeline at times, we characterize the control DTS of instructions

along all incoming edges to the basic block.

Datapath DTS Characterization. Estimating DTS of the data-

path is much simpler than the control network. This provides the

opportunity to improve simulation time by using a higher-level

timing model instead of the gate-level analysis we performed on

the control endpoints. We use the timing model proposed in [2],

which is trained by applying Algorithm 1 to measure DTS of data

endpoints as the processor runs special instruction sequences and

input data that selectively activate specific timing paths.

Datapath Activity Characterization. Because our datapath

DTS model only requires values of architecturally visible registers,

we can perform the analysis at the architecture level. To further

improve efficiency, instead of a simulator, we implement the model

by instrumenting the program with native instructions. We used

the same technique as in [3], implemented on LLVM [19] platform.

4.1 Instruction Error Probability
As explained in Section 3, when process variation is considered in

the analysis, DTS is a random variable rather than a fixed number.

Therefore, it is not possible to deterministically predict whether or

not some instructions with near-zero DTS will experience timing

errors. Instead, we can assign a probability of error to each instruc-

tion. As the program is executed with different input vectors, we

Figure 2: Instruction DTS Estimation Flow.

record error probability of all dynamic instances of each instruc-

tion and form a probability distribution of them that captures the

effect of data variation. We also measure, for each basic block, the

activation probability of each incoming edge as the fraction of basic

block executions in which the edge was used to transfer the control

to the basic block.

Effect of ErrorCorrection Scheme.The error correctionmech-

anism used by the TS processor can have a dynamic effect on in-

struction error probabilities. For example, when a timing error is

detected, the processor might insert bubbles into the pipeline to

keep the errant instruction and the ones that follow from changing

the architectural state [9] or flush the pipeline to resolve any com-

plex bypass register issues [4]. Consequently, the next instruction

has to change the processor state, i.e., the contents of registers, not

from the state induced by the errant instruction, but from the state

induced by the correction mechanism, to the state it induces itself,

thereby activating a different set of timing paths. In other words,

when we simulate the program, the instruction error probabilities

we find are in fact conditional probabilities assuming correct execu-

tion of the previous instruction. So we must also find the other set

of conditional error probabilities—assuming the previous instruc-

tion experienced a timing error. We emulate the error correction

scheme by instrumenting the program with instructions that mimic

its effect. For example, we insert a nop instruction before every

instruction in the program to mimic the effect of a pipeline flush
∗
.

We proceed by describing a procedure for computing the marginal
error probabilities.

4.2 Marginal Error Probability
Problem Formulation. Suppose that the program has been di-

vided intom basic blocks B1, . . . ,Bm . Let di and ni be the number

of incoming edges (indegree) and instructions of Bi , respectively.
For all j = 1, . . . ,di and k = 1, . . . ,ni , p

a
i j
is the activation proba-

bility of the jth incoming edge to Bi such that

∑di
j=1 p

a
i j
= 1 while

random variables pcik
and peik

are conditional error probabilities

of its kth instruction given the previous instruction has executed

correctly or incorrectly, respectively. Let pik be a random variable

representing the (marginal) error probability of the kth instruc-

tion in the ith basic block. Find pik using pcik
, peik

, and pai j for all

i = 1, . . . ,m, k = 1, . . . ,ni , and j = 1, . . . ,di .

∗
The added instructions are only used to find the conditional error probabilities and

the phrase “previous instruction” still refers to the previous instruction in the original

program.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Omid Assare and Rajesh Gupta

If the marginal error probability of the first instruction of a basic

block is known, marginal error probabilities of all others can be

computed using a recurrence relation. For all k = 2, . . . ,ni .

pik = p
e
ikpik−1 + p

c
ik (1 − pik−1) (1)

For basic blocks with more than one incoming edge, define input
error probability of Bi as a new random variable pini that represents

the error probability of the instruction executed just before entering

Bi . In addition, let pouti = pini be the output error probability of Bi .
To model the assumption that the processor is in a flushed state

when it starts executing the program, we assume pin
1
= 1. Then,

pini =

di∑
j=1

pai jp
out
ti (j), (2)

where ti (j) is the index of the basic block connected to the tail of

the jth incoming edge to Bi . For cycles in the CFG, we construct a

system of linear equations by writing Equations (1) and (2) for all

the basic blocks in the cycle, in which edge activation probabilities

form the coefficient matrix and instruction error probabilities are

the unknowns. Using Tarjan’s algorithm [23] to identify strongly

connected components of the CFG and their topological ordering,

we write and solve a system of linear equations for each component.

5 PROGRAM ERROR RATE
In this section, we propose a methodology for estimating a pro-

gram’s error rate distribution. To simplify the equations, we esti-

mate the number of timing errors, error count, rather than error

rate. Our approach is inspired by the fact that real-world programs

typically execute a very large number (up to trillions) of dynamic

instructions. This observation, along with the fact that each instruc-

tion fails with a small probability, hints at effective use of limit

theorems for estimating program error count. Specifically, we use

the law of rare events, also known as the Poisson limit theorem, to

approximate the program error count with a Poisson distribution

and the law of large numbers, also known as the central limit theo-

rem, to approximate the parameter of this Poisson distribution with

a Gaussian one. To verify the accuracy of our approximations, we

cannot use Monte Carlo experiments because our baseline simula-

tor is too slow to handle large input datasets. Instead, we use Stein’s
method and its application, Chen-Stein method, to obtain bounds on

the approximation error of the normal and Poisson distributions,

respectively.

Problem Formulation. Suppose that the program has been di-

vided intom basic blocks B1, . . . ,Bm . Let ni and ei be the number

of instructions and executions of basic block Bi , respectively. For all
i = 1, . . . ,m and k = 1, . . . ,ni , let Iik be a set of Bernoulli random

variables corresponding to the instructions such that Pr (Iik = 1)
is equal to the error probability of the kth instruction in the ith
basic block, denoted by pik . Moreover, let I ini be a Bernoulli random

variable representing the instruction executed just before entering

Bi and let pini = Pr (I ini = 1). Assume that Iik and pik are only

dependent on Iik−1 and pik−1 , respectively, for all i = 1, . . . ,m and

k = 2, . . . ,ni and on I ini and pini for k = 1
†
. The number of errors

†
Note that the dependence of Iik on Iik−1 (whether or not the instructions fail) and

that of pik on pik−1 (the probability that the instruction fails) stem from different

roots. The former is caused by the error correction mechanism (see Section 4.1) while

in the program, a random variable denoted by NE , can then be

calculated as a weighted sum of the Bernoulli random variables

NE =
∑m
i=1

∑ni
k=1 ei Iik . Estimate the program error count distribu-

tion as an approximation of NE denoted by N E .

The distribution of the sum of independent, non-identically dis-

tributed Bernoulli indicators is called a Poisson binomial distribution
(PBD). Computing PBD, however, becomes prohibitively complex

when there are more than a few indicators [17]. Consequently,

approximation techniques targeting various distributions such as

normal and Poisson have been widely developed and used [10]. The

law of rare events provides the intuition (proof in [20]) that when

there are a large number of indicators, each with a small success

probability, PBD is approximately a Poisson distribution. Even in

the casewhere the indicators are not independent, if the dependence

can be somehow confined, their sum should still approximately

follow a Poisson distribution. Accordingly, since programs typically

execute a large number of instructions, each with a very small

error probability, the total number of errors could effectively be

approximated by a Poisson distribution. But for this approximation

to be reliably used, it is necessary to determine how much error it

could potentially incur. A method for establishing bounds on nor-

mal approximation of the sum of dependent random indicators was

introduced by Stein [22]. Chen [5] later used this methodology in

the Poisson setting and obtained error bounds for Poisson approxi-

mation as well. Here, we use the Stein and Chen-Stein methods to

evaluate the reliability of using Poisson and normal approximations

for estimating the distribution of a program’s error count. We start

by a formal formulation of the results of the Chen-Stein method as

given in [1].

Theorem 5.1. Let I be an index set. For each α ∈ I , let Xα be a
Bernoulli random variable with pα = Pr (Xα = 1) > 0. LetW =∑
α ∈I Xα , and let Z be a Poisson random variable with EZ = EW =

λ < ∞. For each α ∈ I , let Bα ⊂ I with α ∈ Bα be a neighborhood of
α consisting of the set of indices β such thatXα andXβ are dependent.
Define

b1 =
∑
α ∈I

∑
β ∈Bα

pαpβ , (3)

b2 =
∑
α ∈I

∑
α,β ∈Bα

pα β , where pα β = E[XαXβ]. (4)

Then,

dTV (W ,Z) ≤ min
{
1, λ−1

}
(b1 + b2), (5)

where dTV (W ,Z) is the total variation distance between the distribu-
tions ofW and Z .

While in our problem, the number of errors is a weighted sum

of the Bernoulli indicators, because the indicators can be depen-

dent and the weights are integers, we can simply assume multiple

identical indicators for each instruction as reflected in Equation (6).

NE =

m∑
i=1

ni∑
k=1

ei Iik =
m∑
i=1

ni∑
k=1

ei∑
j=1

Iik . (6)

the latter is a result of the correlation between DTS of the two instructions due to their

activated paths including the same gates and/or nearby gates affected by the spatial

correlation property of process variation.

Accurate Estimation of Program Error Rate
for Timing-Speculative Processors DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

Dependency neighborhood of each instruction consists of itself and

the previous instruction. Therefore, we can calculate the parameters

b1 and b2 to obtain the error bound.

b1 =

m∑
i=1

ei∑
j=1
(pini pi1 +

ni∑
k=2

pik−1pik) (7)

b2 =

m∑
i=1

ei∑
j=1
(pini pei1 +

ni∑
k=2

pik−1p
e
ik) (8)

dK (NE ,N E) ≤
b1 + b2

λ
(9)

λ =
m∑
i=1

ni∑
k=1

ei∑
j=1

pik , (10)

where N E is a Poisson random variable with mean (and variance)

E[N E] = E[NE] = λ > 1 and dK (NE ,N E) is the Kolmogorov metric,
the maximum distance between distributions of NE and N E . We

could replace the total variation distance in Equation (5) with the

Kolmogorov metric because dK ≤ dTV (proof in [14]). Also, note

that b1 and b2 are random variables. However, for the purpose of

bounding the approximation error, we will use their worst-case

values (expected value plus 6 times standard deviation).

To approximate the distribution of λ in Equation (10), which we

call λ, we turn to another limit theorem. The central limit theo-

rem provides that the sum of a large number of random variables

approximately follows a normal distribution. A bound on the ap-

proximation error can be found by applying the Stein’s method.

Theorem 5.2 provides a simple description of the results of Stein’s

method as applicable to our problem.

Theorem 5.2. Let X1, . . . ,Xn be random variables such that
E[X 4

i] < ∞, E[Xi] = µi , and define µ =
∑
i µi , σ 2 = Var (∑i Xi),

andW =
∑
i Xi . Let the collection (X1, . . . ,Xn) have dependency

neighborhoods Ni , i = 1, . . . ,n, and let D =max1≤i≤n |Ni |. Define

b1 = D2

σ 3

n∑
i=1

E |Xi |3 (11)

b2 =
√
28D

3

2√
πσ 2

√√ n∑
i=1

E[X 4

i]. (12)

Then, for a normal variable Z = N (µ,σ 2),

dK (W ,Z) ≤ (2π)
1

4 (b1 + b2), (13)

where dK (W ,Z) is the Kolmogorov metric, the maximum distance
between the two distributions.

Defining dependency neighborhoods as before, we have D = 2.

With error probability distributions represented as discrete random

variables, it is straightforward to compute their third and fourth

moments to substitute in Equations (11) and (12). The result is a

bound on dK (λ, λ), the maximum distance between distributions of

λ and λ.
Finally, the estimated cumulative distribution function of the

total number of errors, denoted by N E (k) is given by Equation (14).

N E (k) =
∫ ∞
0

e−λ(x)
⌊k ⌋∑
i=0

λi (x)
i!

dx (14)

where λ(x) is the probability distribution function of λ. In simple

words, N E (k) returns the probability of the program experiencing

less than, or exactly, k errors when it is run with a random input

on a randomly chosen manufactured chip.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup
We consider the integer unit of LEON3, an open-source in-order

processor core that implements the SPARC V8 architecture [13].

Synthesis and Static Timing Analysis. The design was syn-

thesized, placed, and routed on the 45nm TSMC technology target-

ing the typical-case corner (TT,0.9V,25C) using Synopsys Design

Compiler and Synopsys IC Compiler. Synopsys PrimeTime calcu-

lated maximum (non-speculative) frequency at 718MHz using SSTA

performed at (0.81V,25C), guardbanding for a 10% voltage droop.

The point of first failure was measured at 810MHz (1.13x baseline)

and we assumed a working frequency of 825MHz (1.15x baseline).

Error Detection and Correction.We assume that error detec-

tion and correction circuits guarantee correct execution. Similar to a

LEON3-based 45nm resilient Intel research processor [4], we adopt

a conservative error correction mechanism known as instruction re-

play at half-frequency.When a timing error is detected, frequency is

halved, the pipeline is flushed, and the errant instruction is reissued,

resulting in a 24-cycle penalty for our 6-stage pipeline.

Power and Area Overheads. The error detection and correc-

tion schemes for our design have been shown to incur a power and

area overhead of less than 0.9% and 3.8%, respectively [4].

6.2 Framework Runtime
We selected 12 benchmark programs, two from each of the six

categories of MiBench [16]. We used the small and large input

datasets for training and simulation, respectively. The training

phase, which consists of characterizing DTS of the control network,

was performed on a machine with a 3.40GHz Intel Core i7-3770

processor. We ran the simulations, i.e., executed the instrumented

programs, on a Sun UltraSPARC IIIi running Solaris 10 at 1.36GHz

and measured the runtime at around 4.6 million instructions (of the

original program) per second. In total, it took us around 85 minutes

to run all experiments—training the model for 1,240 basic blocks

and simulating around 5.8 billion instructions—for the 12 programs.

The runtimes for individual programs divided into training and

simulation times are listed in Table 2.

6.3 Error Rate Distributions
Figure 3 shows the cumulative probability distributions our frame-

work estimated for each program’s error rate along with their lower

and upper bounds. The top horizontal axis is labeled (not to scale)

with performance improvements resulting from the corresponding

error rate on the bottom axis. For example, an error rate of 0.4%

results in a 4.93% improvement in performance of the TS processor

we considered. Error rate distributions provide an estimate of how

much a program would benefit from running on a TS processor and

how sensitive it is to variations in physical parameters and program

input data. The programs exhibit varying degrees of vulnerability

to timing errors, with the mean error rates ranging from 0.131%

(resulting in a 11.9% performance improvement) in the case of

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Omid Assare and Rajesh Gupta

Table 2: Results, Performance, and Accuracy of Our Framework

Benchmarks Program Size Runtime (s) Program Error Rate (%) Approximation Error
Instructions Basic Blocks Training Simulation Total Mean SD dK (λ, λ) dK (RE , RE)

basicmath 1,487,629,739 86 274 322 596 0.406 0.074 0.023 0.020

bitcount 589,809,283 72 221 128 349 0.339 0.102 0.035 0.037

dijkstra 254,491,123 70 211 55 266 0.441 0.012 0.022 0.020

patricia 1,167,201 184 555 0.2 556 0.131 0.017 0.007 0.005

pgp.encode 782,002,182 49 140 170 310 0.241 0.049 0.012 0.011

pgp.decode 212,201,598 56 160 46 206 0.661 0.110 0.042 0.039

tiff2bw 670,620,091 174 450 145 595 0.457 0.131 0.040 0.032

typeset 66,490,215 69 241 14 255 0.532 0.022 0.030 0.022

ghostscript 743,108,760 192 652 161 813 0.133 0.052 0.015 0.014

stringsearch 27,984,283 133 423 6 429 0.351 0.010 0.019 0.015

gsm.encode 473,017,210 75 238 102 340 0.753 0.053 0.036 0.032

gsm.decode 497,219,812 80 254 107 361 1.068 0.213 0.056 0.054

Total 5,805,741,497 1,240 3,825 1,259 5,084

Figure 3: Cumulative Probability Distributions of Program
Error Rate and Their Lower and Upper Bounds.

patricia to 1.068% (resulting in a 8.46% performance degradation)

for gsm.decode. These results demonstrate that application-specific

analysis is necessary for accurate evaluation of TS processors and

to identify suitability of specific applications for timing speculation.

6.4 Approximation Error
In Section 5, we identified two sources of inaccuracy in our error

rate model—Poisson approximation of program error count and

normal approximation of program error count mean. By combin-

ing these errors, we form two additional distributions for program

error count, a lower bound distribution and an upper bound distri-

bution. First, we add/subtract the bound on dK (λ, λ) we established
in Equation (13) to/from both instances of λ in Equation (14). Then,

we add/subtract the bound on dK (NE ,N E) we established in Equa-

tion (9) to/from the right-hand side of Equation (14). Table 2 lists

the results for each program. According to these results, our frame-

work can approximate the probability that a program experiences a

certain error rate with a maximum error of 5.4%. Note that the last

column shows the bounds on the approximation error of program

error rate (RE), not error count (NE).

REFERENCES
[1] R. Arratia, L. Goldstein, and L. Gordon. Poisson approximation and the chen-stein

method. Statist. Sci., 5(4):403–424, 11 1990.
[2] O. Assare and R. Gupta. Timing analysis of erroneous systems. In Proceedings

of the 2014 International Conference on Hardware/Software Codesign and System
Synthesis, CODES ’14, pages 7:1–7:10, New York, NY, USA, 2014. ACM.

[3] O. Assare and R. Gupta. Strategies for optimal operating point selection in timing

speculative processors. In 2016 IEEE 34th International Conference on Computer
Design (ICCD), pages 584–591, Oct 2016.

[4] K. Bowman, J. Tschanz, S. Lu, P. Aseron, M. Khellah, A. Raychowdhury,

B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik, and V. De. A 45 nm re-

silient microprocessor core for dynamic variation tolerance. Solid-State Circuits,

IEEE Journal of, 46(1):194–208, Jan 2011.

[5] L. H. Y. Chen. Poisson approximation for dependent trials. Ann. Probab., 3(3):534–
545, 06 1975.

[6] H. Cherupalli, R. Kumar, and J. Sartori. Exploiting dynamic timing slack for

energy efficiency in ultra-low-power embedded systems. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pages 671–681,
June 2016.

[7] H. Cherupalli and J. Sartori. Scalable n-worst algorithms for dynamic timing and

activity analysis. In 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 585–592, Nov 2017.

[8] J. Constantin, L. Wang, G. Karakonstantis, A. Chattopadhyay, and A. Burg. Ex-

ploiting dynamic timing margins in microprocessors for frequency-over-scaling

with instruction-based clock adjustment. In 2015 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 381–386, March 2015.

[9] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull, and

D. Blaauw. Razorii: In situ error detection and correction for pvt and ser tolerance.

Solid-State Circuits, IEEE Journal of, 44(1):32–48, Jan 2009.

[10] C. Daskalakis, I. Diakonikolas, and R. A. Servedio. Learning poisson binomial

distributions. In Proceedings of the Forty-fourth Annual ACM Symposium on
Theory of Computing, STOC ’12, pages 709–728, New York, NY, USA, 2012. ACM.

[11] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner.

Razor: circuit-level correction of timing errors for low-power operation. Micro,
IEEE, 24(6):10–20, Nov 2004.

[12] Y. Fan, T. Jia, J. Gu, S. Campanoni, and R. Joseph. Compiler-guided instruction-

level clock scheduling for timing speculative processors. In Proceedings of the
55th Annual Design Automation Conference, DAC ’18, pages 40:1–40:6, New York,

NY, USA, 2018. ACM.

[13] A. Gaisler. Tsim erc32/leon simulator.

[14] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics. Interna-
tional statistical review, 70(3):419–435, 2002.

[15] B. Greskamp, L. Wan, U. R. Karpuzcu, J. J. Cook, J. Torrellas, D. Chen, and C. Zilles.

Blueshift: Designing processors for timing speculation from the ground up. In

2009 IEEE 15th International Symposium on High Performance Computer Architec-
ture, pages 213–224, Feb 2009.

[16] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. Mibench:

A free, commercially representative embedded benchmark suite. In Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop on, pages 3–14,
Dec 2001.

[17] Y. Hong. On computing the distribution function for the poisson binomial

distribution. Comp. Stat. Data Anal., 59:41–51, Mar. 2013.

[18] X. Jiao, A. Rahimi, Y. Jiang, J. Wang, H. Fatemi, J. P. de Gyvez, and R. K. Gupta.

Clim: A cross-level workload-aware timing error prediction model for functional

units. IEEE Transactions on Computers, 67(6):771–783, June 2018.
[19] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program

analysis amp; transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pages 75–86, March 2004.

[20] L. Le Cam. An approximation theorem for the Poisson binomial distribution. Pac.
J. Math., 10:1181–1197, 1960.

[21] D. Sinha, H. Zhou, and N. V. Shenoy. Advances in computation of the maximum

of a set of gaussian random variables. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 26(8):1522–1533, Aug 2007.

[22] C. Stein. A bound for the error in the normal approximation to the distribution

of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume 2: Probability Theory,
pages 583–602. University of California Press, 1972.

[23] R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1972.

[24] Y. Zhang,M. Khayatzadeh, K. Yang,M. Saligane, N. Pinckney,M. Alioto, D. Blaauw,

and D. Sylvester. irazor: Current-based error detection and correction scheme

for pvt variation in 40-nm arm cortex-r4 processor. IEEE Journal of Solid-State
Circuits, 53(2):619–631, Feb 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Dynamic Timing Analysis
	4 Instruction Error Model
	4.1 Instruction Error Probability
	4.2 Marginal Error Probability

	5 Program Error Rate
	6 Experimental Results
	6.1 Experimental Setup
	6.2 Framework Runtime
	6.3 Error Rate Distributions
	6.4 Approximation Error

	References

