
Timing Analysis of Erroneous Systems

Omid Assare and Rajesh Gupta

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0404
{omid, gupta}@ucsd.edu

ABSTRACT
Erroneous systems allow timing errors to occur during ex-
ecution, but use measures to ensure continued operation
through changes in operating parameters (voltage and fre-
quency), error correction at various levels of the system, or
ensuring controlled occurrence of errors to perform approxi-
mate computing. In this paper, we are interested in charac-
terization of error behavior at the level of instructions and
programs. We propose Inter- and Intra-Program Variation
as measures of error rate variability in different programs
and among instructions of a program, respectively. We also
characterize the error rate variation caused by the program
input data and show that it is comparable to other sources
of variability such as process variation. Finally, we present
an analysis of the physical location of errors in hardware,
identify regions in which most of the errors occur, and how
different programs change the distribution of errors among
these regions. In order to enable reliable timing analysis of
large programs, we propose Clustered Timing Model (CTM),
a high level timing model based on clustering functionally
similar timing paths of the processor, and develop a CTM
for LEON3, a representative in-order RISC processor. The
accuracy of the model is verified using our variation-aware
timing analysis framework with an average error of 3.9%
(max. 6.7%) across a wide range of voltage-temperature
corners.

Categories and Subject Descriptors
B.8 [Performance and Reliability]; C.4 [Performance
of Systems]: fault tolerance, measurement techniques, and
modeling techniques

Keywords
erroneous systems, variability, process variation, delay faults,
variation-aware timing analysis, dynamic error estimation,
and software error behavior.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ESWEEK’14 October 12 - 17 2014, New Delhi, India
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3051-0/14/10 $15.00.
http://dx.doi.org/10.1145/2656075.2656101 .

1. INTRODUCTION
The behavior of CMOS circuits is increasingly suscepti-

ble to variations in the manufacturing process and envi-
ronmental conditions. There are two principal sources of
variation [1]: physical variations, which cause structural pa-
rameter fluctuations in device and interconnect, and envi-
ronmental variations, which include fluctuations in power
supply and die temperature. Process variation has die-to-
die (D2D) and within-die (WID) components [2]. A recent
experimental Intel processor shows around 50% performance
variation among its 80 cores when operated at 0.8V due to
WID process variation alone [3]. As for the environmental
variations, International Technology Roadmap for Semicon-
ductors (ITRS) projects supply power variation to be 10%
while the operating temperature can vary from 30 to 175◦C
resulting in several tens of percent performance change [4].

Circuit designers have addressed the growing uncertainty
in the timing characteristics of variability-affected systems
by continueous widening of timing guardbands. However,
gaurdbands continue to increase steadily with each tech-
nology generation [4], leading to loss of performance and
increased costs due to overdesign. In response, variability
management techniques have seen significant attention in
recent years. The majority of these techniques take one of
the following approaches:
1. Uncertainty modeling : These methods try to develop tim-

ing models that would predict the effect of various sources
of uncertainty on the timing behavior of systems. Statis-
tical Static Timing Analysis (SSTA) is an example, where
process parameters are treated as statistical distributions
and their impact on performance is quantified using sta-
tistical methods. Using such models, designers are able
to decrease timing gaurdbands caused by the variability
in the manufacturing process of CMOS circuits.

2. Dynamic adaptation: These techniques build capabilities
into the systems to enable runtime adaptation. One such
technique, called Active Management of Timing Guard-
band [5], is implemented in IBM POWER7 server where
Critical Path Monitors (CPM) measure the available tim-
ing margin under thermal fluctuations, voltage skewing,
workload-induced voltage and temperature variations, etc.,
and a control unit adjusts processor voltage and frequency
to achieve error-free operation while reducing the guard-
bands.

A key shift in the way timing margins are viewed by cir-
cuit designers was introduced by the idea of timing specu-
lation [6]. Traditional sequential circuit designs work un-
der the strict condition that voltage and frequency of the

circuit should be set such that no timing violations can oc-
cur. Timing speculation, on the other hand, allows tim-
ing errors by removing timing margins and relies on circuit-
and architecture-level techniques to detect and recover from
these errors. While static timing analysis methods assume
an overly pessimistic worst-case condition on the input data
to a circuit block (i.e. software in the case of processors),
and impose an implicit timing margin, timing speculative
systems view software as yet another source of uncertainty.
A representative example is Razor [6] in which gaurdbands
are reduced to the extent that represents onset of timing
errors. However, the variability in how different instruction
sequences cause errors leads to increased performance during
the execution of less vulnerable code, while faulty instruc-
tions are detected and corrected using special hardware and
by paying a recovery penalty.

Timing speculative systems are part of a larger class of
systems called erroneous systems [3]. While timing specula-
tive processors maintain correct execution by using hardware-
based error recovery mechanisms, other erroneous systems
rely upon application level error recovery, or even relax the
correct execution criteria and perform approximate comput-
ing. A common characteristic of erroneous systems is the
important role of software in both determining and manag-
ing the system’s error behavior. However, to do this process
well, we need models that can predict how errors occur as a
function of the actual running code.

In this new paradigm, the model of hardware presented to
software as the execution machine of the instructions is not
a constant and deterministic model, but a variable and non-
deterministic one. Moreover, the variability of this model
is not only a function of physical and environmental pa-
rameters on which software has nearly no control, but also
a strong function of the software itself. The execution of
two different sequences of instructions could dramatically
change the timing behavior of a fixed piece of hardware in
a fixed environment. As such, the traditional hardware-to-
software model that only consisted of a set of instructions
with fixed and deterministic timing and functional behav-
iors is no longer sufficient. New models need to dynamically
predict the next state of the system based on the software it
is running and the environmental conditions it is placed in,
and be aware of the non-determinism present due the phys-
ical variations. Moreover, for these models to be seamlessly
utilized in the design flow of both hardware and software
systems, they need to have vital characteristics of existing
timing models such as modularity, hierarchy, and the ca-
pability of producing detailed information about the timing
behavior of the system.

In this paper, we propose one such model and use it to
explore questions such as:
1. Do different programs behave similarly on the same pro-

cessor and cause similar error rates? If not, by how much
do these differ?

2. Will the error rates remain unchanged when the program
is rerun with different input data? If not, can we quantify
the effect of input data? Is the variability in this case as
significant as other sources such as process variation?

3. Which instructions/parts of the program cause more er-
rors (how is the error distribution like among instruc-
tions)? Do these instructions/parts of the program have
something in common?

4. Where do errors happen in hardware (how is error dis-

tribution like among different modules of the processor)?
Does this distribution change with different programs?

In trying to find answers to these questions, we make three
main contributions:
1. We start by constructing an accurate timing analysis frame-

work to enable variability-aware analysis of the error be-
havior of small pieces of code. The framework takes
advantage of industry-standard timing analysis methods
and provides accurate dynamic delay distributions of an
arbitrary circuit block while considering environmental
conditions (i.e. voltage and temperature), process varia-
tion including its within-die spatial correlation property,
and the timing paths sensitized by the specific instruction
sequence and input data (Section 4).

2. We introduce Clustered Timing Model (CTM) as a high
level timing model for dynamic estimation of errors. In
order to enable fast implementations, CTM relies on group-
ing functionally similar timing paths and modeling their
timing behavior as a function of their specific operation.
We develop a CTM for LEON3 as a representative in-
order RISC processor and use our timing analysis frame-
work to verify the accuracy of the model and demonstrate
its robustness across a wide range of voltage-temperature
corners with an average error of 3.9% (max. 6.7%). More-
over, we discuss important properties of the model such as
modularity and hierarchy which enable its easy use and
re-use during different stages of system design (Section
5).

3. We present an analysis of representative software error
behavior by introducing four aspects of the error behav-
ior of erroneous systems. Inter- and Intra-Program Vari-
ation which represent the error rate variability in dif-
ferent programs and among instructions of a program,
respectively, are discussed. We also characterize the er-
ror rate variation caused by the program input data and
show that it is comparable to other sources of variability
such as process variation. Finally, we present an analysis
of the physical location of errors in hardware, identify re-
gions in which most of the errors occur, and how different
programs change the distribution of errors among these
regions (Section 6).

2. RELATED WORK
The need for a fast and accurate timing model for dynamic

estimation of errors is most evident in the ‘Experimental Re-
sults’ sections of papers describing variability management
techniques of erroneous systems (i.e. systems that allow tim-
ing errors) where researchers face the long simulation times
of variability effects at the architecture level [12-16]. The
lack of fast simulation platforms for these systems is becom-
ing a bottleneck and a key challenge for erroneous systems
research [4], [14]. As a result, most works limit their analysis
in both time (analyzing only small parts of the application
software) and space (analyzing only a few components of
the system), adversely affecting optimization opportunities
and/or accuracy of evaluation. The following are some ex-
amples of variability management techniques in which the
analysis of dynamic error behavior has been limited. Trifecta
[12] focuses only on the ALU adder and selection logic. Roy
and Chakarborty [13] only consider ALU errors and limit
their simulations to 100 instructions that most frequently
exercise the ALU. Xin and Joseph [14] focus on ALU, LSU,
and Shift/Branch units. Hoang et al. [15] reduce the size of

benchmark input sets due to extremely long run- times as-
sociated with gate-level simulations. Similarly, Sartori and
Kumar [16] only study the LSU and IQ and do not simulate
the benchmarks for their entire duration.

At the same time, efforts specifically directed at variability-
induced error prediction have also been limited. Rehman et
al. [9] assume that the area of functional units determine
their error rate which, while acceptable in case of soft errors,
is not extendable to errors caused by variability. Rahimi et
al. propose Instruction [10] and Sequence [11] Level Vulner-
ability to predict the error probabilities, but their models do
not specifically take input data dependence into account. A
number of recent works [13], [14] have proposed to use the
Program Counter (PC) to predict errors, suggesting that
various dynamic instances of an instruction behave simi-
larly due to locality of input data. Such techniques, even
if effective, do not result in timing models that can be used
at various phases of the design of these systems. Finally,
an emulation testbed for variability-aware software called
VarEMU is presented in [7]. While VarEMU provides a fast
and easy-to-use platform for implementation of error models
and may be useful for variability-aware software power anal-
yses, it cannot handle the cycle-by-cycle nature of variability
in causing errors due to the functional (and not cycle-true)
operation of the underlying virtual machine.

3. BACKGROUND
In this section, we present a basic overview of how errors

occur and why it is difficult to model the error behavior of a
processor. We would like to note that this description does
not aim for absolute accuracy and makes some assumptions
for a clearer explanation.

A sequential circuit contains a set of combinational blocks,
each enclosed within two sets of registers that save the state
of the circuit during each clock cycle. Each combinational
block has a set of inputs and outputs and is composed of
paths of logic gates connecting the inputs to the outputs.
Each path starts from an input, goes through a set of logic
gates and terminates at an output. Assuming a constant
propagation delay for each gate, the propagation delay of
a path is the sum of the propagation delays of all its gates.
Static Timing Analysis (STA) computes the propagation de-
lay of each combinational block as the delay of its longest
path and the minimum clock period of the sequential circuit
as the maximum of the delays of all its combinational blocks
which is called the static minimum clock period. If the cir-
cuit operates at a higher clock frequency (i.e. lower clock
period), at least one of its paths with a propagation delay
larger than the clock period fails the timing requirement of
the circuit. If a transition on the inputs of combinational
blocks needs a failing path to reach the outputs, an incorrect
value will be registered at the destination register and cause
an error. However, other transitions that need non-failing
paths to propagate their input transitions to the outputs
continue to operate correctly.

At each clock cycle, the dynamic minimum clock period
can be calculated as the delay of the longest sensitized path.
A path is called sensitized or activated when all its com-
posing gate outputs toggle their values. Since only a subset
of paths are sensitized during each clock cycle, the circuit
can still operate correctly at this frequency even though it is
higher than the static maximum frequency. The calculation
of the dynamic maximum frequency requires the identifica-

tion of the sensitized paths. While dynamic simulations can
be used to achieve this, their high computation complexity
renders this solution prohibitively time consuming. We will
explain a framework that takes this approach in Section 4
in detail.

The within-die component of process variation and its spa-
tial correlation property further exacerbates this problem by
non-uniformly affecting gate propagation delays. While the
set of activated paths is determined solely by input transi-
tions, the propagation delay of paths, and hence, the dy-
namic maximum frequency of the circuit cannot be deter-
ministically calculated. When process variation is consid-
ered, the path delays become statistical distributions rather
than deterministic numbers. Moreover, these distributions
are statically correlated due to spatial correlation of pro-
cess variation. A path that would nominally pass or fail
the timing requirements may now do otherwise with a cer-
tain probability. While Statistical Static Timing Analysis
(SSTA) computes the static delay distribution of the cir-
cuit, in this paper, we are interested in approximating the
dynamic maximum frequency distribution of a circuit when
process variation is taken into account. Similar to SSTA, we
assume all delay distributions to be normal Gaussian distri-
butions. Given the dynamic maximum frequency distribu-
tion (or dynamic delay distribution) and the actual working
frequency, we can derive the probability of the occurrence
of errors.

4. VARIATION-AWARE TIMING ANALYSIS:
A FIRST ATTEMPT

Consider the following problem: Given a gate-level imple-
mentation of a processor and a piece of code, compute the
dynamic delay distribution of the processor at a given clock
cycle during the execution. In this section, we describe a first
attempt to solve this problem, in which we will aim for max-
imum accuracy, and relax the concerns of computation time.
This will provide us with an analysis framework suitable for
use as a baseline (ground truth) in accuracy evaluation and
for model training.

The basic idea is to perform SSTA only on the set of paths
sensitized during the desired clock cycle, which will give the
dynamic delay distribution at that point in time. The frame-
work, therefore, consists of (i) performing functional simu-
lation and extracting sensitized paths, (ii) performing SSTA
over the set of sensitized paths to find their delay distribu-
tions and their correlations, and (iii) applying a statistical
MAX operation to achieve the processor delay distribution.
A detailed description of the framework, as shown in Fig. 1,
follows:
First, the design is synthesized using its RTL description

and a gate-level netlist is obtained. The netlist is then used,
along with the sequence of instructions given as input, to
perform a functional simulation (a timing simulation is not
necessary). Switching activity of all circuit nets (i.e. tog-
gling times) obtained from the simulation and the gate-level
connectivity information in the netlist are used to extract
the activated paths during the clock cycle of interest (re-
call that a path is activated when all its nets have toggled).
Finally, using variation-aware standard cell libraries, SSTA
is performed on the set of activated paths and their de-
lay distributions are calculated. For the paths originating
from SRAM-based memory structures, the access time dis-

RTL

Variation-Aware

SRAM Timing Model

Variation-Aware

Cell Library

Standard

Cell Library

Synthesis

Netlist Functional

Simulation

P&R
Switching

Activity

Layout Activated Path

Extraction

SSTA
Activated

Paths

Dynamic Delay

 Distribution

Instruction

Sequence

Figure 1: Variation-Aware Timing Analysis Frame-
work

tribution of the memory (obtained from a variability-aware
SRAM timing model) is added to the delay distribution of
combinational paths. Using correlations of each activated
path delay pair from the results of SSTA, a statistical MAX
operation is applied to achieve the dynamic delay distribu-
tion of the processor.

Inside the experimental infrastructure (Fig. 1), ASIC im-
plementation is performed using Synopsys Design Compiler
and Synopsys IC Compiler targeting a TSMC 45nm technol-
ogy [21]. SSTA is performed with the variation-aware timing
analysis engine of Synopsys PrimeTime using the variation-
aware TSMC libraries. This flow is commonly used in the
industry and is widely considered as a reliable methodol-
ogy for chip implementation and timing analysis. Func-
tional simulation is performed using the Mentor Graphics
Modelsim. Variation-aware timing models of SRAM struc-
tures (i.e. register file and caches) are developed using VAR-
TX [17], a hybrid analytical-empirical model that provides
SRAM access times in presence of process variation. Finally,
the manual statistical maximum operation inside the SSTA
block is performed using the algorithm in [18]. This greedy
algorithm combines the normal distributions in pairs in a
sequence that would minimize the approximation error.

The framework described above introduces little additional
inaccuracy to the conventional SSTA, including SRAM tim-
ing models and statistical maximum operation. Therefore,
its results can be considered almost as accurate as the SSTA
procedures used. Additionally, the analysis can be done for
different parts of the design separately, resulting in more de-
tailed results. For example, we can find the delay distribu-
tion of each pipeline stage and determine the faulty stage(s).
However, the long run time of this approach makes it un-
suitable for analysis of actual applications which typically
consist of millions of instructions. Relying on the high lev-
els of accuracy and resolution of this framework, we will
use it to train and evaluate the accuracy of a timing model
presented next.

5. CLUSTERED TIMING MODEL
To enable timing analysis of actual applications, we need

a method that is not only nearly as accurate and detailed
as the framework described in Section 4, but also nearly
as fast as an architecture level simulator. To achieve this,
we employ a methodology consisting of (i) high level mod-
eling of path delays and (ii) utilizing runtime architectural
information of the processor. In this section, we present a
high level timing model that simplifies the timing analysis
while maintaining similar accuracy levels as the one used in
the framework we developed earlier. The basic idea is to
take advantage of the functional similarity of timing paths
and cluster them into a few architecture level objects that
determine the delay of the processor.

5.1 Preliminaries
The state of a sequential circuit consists of the contents

of all its flip-flops and its primary input/outputs which to-
gether we call its registers (memory components are con-
sidered as delayed input/output ports). Register clustering
defines an equivalence relation on the state of the circuit,
partitioning its registers into a set of Register Clusters (RC)
and the paths into hyperpaths. There is a hyperpath between
two RCs when there is at least one timing path connecting
a register output in the origin RC to a register input in the
destination RC. Therefore, there can be zero, one, or two
hyperpaths between two RCs. The resulting model is called
a Clustered Timing Model (CTM). (Fig. 4 shows a CTM
of a typical in-order pipelined processor. More details in
section 5.4).

Now, consider an RC with N registers. At clock cy-
cle i, the value of the RC is a vector of size N denoted
by V (i) containing the binary values of its registers and a
transition on the RC is defined as a vector T (i) such that
T (i) = V (i− 1)⊕ V (i). The delay of a hyperpath is a ran-
dom variable representing its propagation delay distribution
in the presence of process variation and a hyperpath delay
function is a function that maps a transition of its origin RC
to this random variable.

When register clustering is performed according to func-
tional similarities of registers, hyperpaths tend to be formed
as collections of timing paths that jointly perform a specific
function. For example, the timing paths forming the WB-
RF hyperpath in Fig. 4 work together to transfer the 32-bit
result of an instruction to be written back to the register
file. Depending on the hyperpath functionality, a transition
resulting in an operation performed by a hyperpath can be
constructed as the combination of a set of primary transi-
tions. In the example of WB-RF hyperpath, this set can be
the set of all single bit transitions. While a hyperpath is es-
sentially a cluster of timing paths, we can also equivalently
consider it as a collection of functional paths such that a
functional path is activated as a result of a primary transi-
tion. Therefore, an operation performed by a hyperpath can
be thought of as a combination of the activation of some of
its functional paths, each activated by a primary transition.
The correlation among timing paths is abstracted into corre-
lations among functional paths and the delay of a hyperpath
is calculated as the maximum of the delays of its activated
functional paths rather than the activated timing paths.

5.2 Training and Application
With these set of abstractions in place, a Clustered Timing

Model is trained and used in two steps:

5.2.1 Model Training
In this step, functional path delays and their correlations

are characterized. This can be achieved by measuring the
hyperpath delays corresponding to primary transitions and
some selectively chosen combinations of them. In order to
estimate the delay correlation (ρ) of functional paths A and
B, we measure the hyperpath delay when only A is acti-
vated, only B is activated, and both A and B are activated,
and call them DA, DB , and DAB , respectively, where each
is a pair of the mean (µ) and standard deviation (σ) of the
delay distribution. The important observation here is that
DAB = MAX(DA, DB), where MAX is the statistical max-
imum operation and returns µAB and σAB [20]:

µAB = µAΦ(
µA−µB

θ
)+µBΦ(

µB−µA

θ
)+θφ(

µA−µB

θ
) (1)

σAB = [(σ2
A+µ2

A)Φ(
µA−µB

θ
)+(σ2

B+µ2
B)Φ(

µB−µA

θ
)

−(µA+µB)θφ(
µA−µB

θ
)]

1
2 (2)

where φ(.) and Φ(.) are, the probability density function
(pdf) and cumulative distribution function (cdf) of the stan-

dard normal distribution, and θ =
√

σ2
A + σ2

B − 2ρσAσB .
The correlation coefficient ρ can be derived from either Eq.
1 or Eq. 2, or as their average to reduce estimation error.

5.2.2 Model Usage
Given an arbitrary transition, we split it into a set of

primary transitions. The hyperpath delay corresponding to
this transition is then computed as the maximum of the
delays of the functional paths activated by each constructing
primary transition two at a time, according to Eq. 1 and Eq.
2 which only require delay distributions and correlations of
the activated functional paths obtained in the training step.

Finally, a Probability of Error (PoE) is assigned to each
hyperpath by replacing the circuits maximum delay (i.e. 1

F
where F is the working frequency) in the cdf of the hyper-
path delay:

PoEH =
1

2

[
1− erf

(
1
F
− µH√
2σ2

H

)]
(3)

where F is the working frequency and µH and σH are the
hyperpath delay mean and standard deviation, respectively.
Since hyperpath delays are considered uncorrelated, PoE of
a processor with N activated hyperpaths H1 through HN ,
can be obtained using Eq. 4.

PoE = 1−
N∏
i=1

(1− PoEHi) (4)

As will be explained in section 6, activated hyperpaths can
be identified using architecture level information available
during simulation. In LEON3 CTM (Fig. 4), for instance,
EXE-D$ hyperpath is only activated by load and store in-
struction while EXE-EXE, MEM-EXE,WB-EXE hyperpaths
are activated when back-to-back dependencies are present.

Figure 2: CTM hierarchy. SSCs 3 and 4 merge to
obtain in a higher-level CTM

Figure 3: CTM modularity. CTMs on the left con-
nect to form CTM on the right

5.3 Modularity and Hierarchy
The timing abstraction described above fits well into a

modular and hierarchical timing model providing easy in-
tegration of previously developed models and configurable
levels of accuracy-speed trade-off for different components
of the design.

5.3.1 Hierarchy
A higher-level CTM can be constructed in a bottom-up

fashion from an existing CTM by clustering its RCs. The
clustering may be done step by step merging two RCs in
each step. When two RCs are merged, two hyperpaths that
connect both the RCs to a single other one are replaced with
a new hyperpath. The delay function of the new hyperpath
would then be the maximum of the delay functions of the
‘merged’ hyperpaths. Since this clustering often involves
approximations in the merging and maximum operations, it
can be used to construct simpler higher-level models from ex-
isting CTMs to obtain faster analysis speeds. This is shown
in Fig. 2 where the red RCs and hyperpaths in the left CTM
are merged and replaced by the blue ones in the left CTM.

5.3.2 Modularity
Multiple existing CTMs can be connected to produce a

new unified CTM in two steps: first, all connecting in-
put/output RCs are removed from the CTMs. Next, each
hyperpath pair in the two CTMs that was previously con-
nected to the removed RCs is replaced with a single hy-
perpath connecting the two internal RCs of the two CTMs.
The delay function of each new hyperpath is obtained by
summing the delay functions of the two hyperpaths it has
replaced. This is shown in Fig. 3 where the two identical
CTMs in the left are serially connected to obtain the right
CTM. For example, previously developed CTMs for Integer
Unit, Floating-Point Unit, and Co-Processors of a processor
could be combined to obtain a new unified CTM.

PC

I$

D

RA

RF

EXE

MEM

D$

WB

Figure 4: Clustered Timing Model for LEON3 pipeline.

5.4 A CTM for In-Order RISC Processors
We now describe a method for developing a CTM for in-

order RISC processors. We will focus on LEON3 processor
as a publicly available representative of such processors, but
our methodology is extendable to other similar RISC cores.

5.4.1 LEON3 Processor Core Overview
LEON3 is a 32-bit processor core conforming to the IEEE-

1754 (SPARC V8) architecture, and can easily be used in a
multiprocessor system. It has a 7-stage pipeline with sep-
arate instruction and data caches and support for static
branch prediction. Instructions are fetched from the In-
struction cache (I$) in Fetch (F) stage and decoded in the
Decode (D) stage. Call and branch target addresses are also
generated in the Decode stage. In Register-Access (RA)
stage, operands are read from the register file or from in-
ternal data bypasses. ALU, logical, and shift operations are
performed in the Execution (EXE) stage. The address for
memory operations as well as jmpl and rett instructions
are also generated in this stage. Data cache (D$) is accessed
in the Memory (M) stage, exceptions are handled in the Ex-
ception (X) stage, and the result of any ALU, logical, shift,
or cache operations are written back to the register file in
the Write-Back (WB) stage.

5.4.2 Register Clustering and Model Training
The register clustering (defined in section 5.1) is the most

important step in the development of a CTM. The clustering
should be chosen such that simple and accurate delay func-
tions can be associated with the resulting hyperpaths. We
propose a functionality-based clustering for in-order RISC
processors such as LEON3 incorporating a functional equiv-
alence relation for clustering the registers. Our clustering
scheme assigns an RC to all registers of a pipeline stage, an
RC to the PC, an RC to the register file ports, and two RCs
to the instruction and data cache ports, resulting in an ab-
straction depicted in Fig. 4, where boxes are RCs and lines
are hyperpaths (shaded boxes represent I/O RCs). With
this register clustering applied, we are able to divide the hy-
perpaths of an in-order RISC processor such as LEON3 into
four types, which will be explained later. To measure the
hyperpath delays, we identify the primary transitions and
provide training code examples for each type. Training codes
are special pieces of code aimed at a specific hyperpath and
enable controlled activation of its different functional paths.

An example pseudocode template is given in Fig. 5. Note
that this code template is only suitable for some of the hy-

1 clr %l0
2 mov data1, %l1
3 mov data2, %l2
4 while (1)
5 {
6 nop ; 7 times
7 inst %l0, %l0, %l3
8 inst %l1, %l2, %l3
9 inst %l0, %l0, %l3

10 nop ; 7 times
11 }

Figure 5: Example pseudocode template for model
training

perpaths and serves as an example of how training codes
should be designed. Training codes for other hyperpaths can
be designed in a similar manner with some changes. Lines
1-3 initialize three registers and lines 4-11 repeatedly execute
the training sequence. Cache misses are avoided by placing
the training instructions in a loop. The training framework
(Section 4) is then configured to record the timing distribu-
tion of the desired hyperpath at some intermediate iteration
of the loop. Note that the model would still be able to han-
dle exceptions such as cache misses and avoiding them in
the training process is done merely for accurate modeling
of hyperpaths without external influences. Inside the loop,
two sets of nop instructions are executed before and after
the training instructions to initialize the pipeline to a clear
state and prevent any back-to-back dependencies. In lines
7-9, three instances of a suitable instruction are executed
where the first and third ones set the control network of
the pipeline to the same state the target instruction (line
8) would induce. This limits back-end pipeline activity to
the data flow activities of training instructions. By setting
inst, data1, and data2 variables to suitable values, we
can configure the code to induce only the primary transi-
tions needed for each hyperpath type.

Next, we introduce the four types of hyperpaths and give
examples of how setting these variables for each type pro-
vides controlled activation of its primary transitions.

I. Data transfer hyperpaths: These hyperpaths per-
form little computation on the contents of their origin RC.
Their function can mainly be described as transferring the
contents of one RC to another. At times, the transfer also
involves bit masking, sign extension, and shift operation.
In LEON3 pipeline, hyperpaths PC-I$, PC-D, I$-D, EXE-

Table 1: CTM estimation relative error across LEON3 hyperpaths and voltage-temperature corners.
Hyperpaths

Origin PC PC PC I$ D D RA RF EXE EXE EXE EXE EXE MEM MEM D$ WB WB
Avg

Destination PC I$ D D RA RF EXE EXE I$ PC EXE MEM D$ EXE WB WB EXE RF

(
V

,T
)

(0.99V,-40◦C) 4.3 2.2 2.3 1.7 5.2 5.8 3.9 2.6 4.1 4.3 4.6 4.7 4.5 4.8 3.1 2.9 4.9 2.1 3.8

(0.81V,125◦C) 5.2 2.0 2.7 1.9 5.5 5.0 3.8 2.5 4.9 4.3 4.8 6.4 4.4 4.2 3.5 2.6 6.1 2.1 4.0

(0.99V,0◦C) 4.5 2.1 2.5 1.8 5.8 5.2 3.5 2.8 4.7 3.9 4.5 5.6 4.0 4.5 3.4 2.8 6.7 2.0 3.9

(0.81V,0◦C) 4.3 2.1 2.2 1.7 5.5 5.9 3.8 2.4 4.2 4.9 4.3 4.5 4.3 4.5 3.1 3.1 4.5 2.3 3.8

(0.81V,-40◦C) 4.3 2.3 2.4 1.9 6.0 5.7 3.4 2.4 4.8 4.2 5.5 4.3 4.9 4.9 3.4 3.2 6.4 2.2 4.0

Avg 4.5 2.1 2.4 1.8 5.6 5.5 3.7 2.5 4.5 4.3 4.7 5.1 4.4 4.6 3.3 2.9 5.7 2.1 3.9

EXE, MEM-EXE, WB-EXE, MEM-WB, RF-EXE, D$-WB,
WB-RF, and EXE-MEM (when the active instruction is
shift) are data transfer hyperpaths. The set of primary tran-
sitions consists of all single-bit transitions of the origin RC.
Therefore, the training step involves measuring the delay of
these hyperpaths when single and two bit transitions occur
on the origin RCs. For the WB-RF hyperpath as an exam-
ple, this can be achieved by setting the inst variable in Fig.
5 to and, and simultaneously setting data1 and data2 to
values in which only one and two bits are set.

II. Addition hyperpaths: These hyperpaths perform
an addition operation on the contents of their origin RC. In
LEON3 pipeline, hyperpaths EXE-PC, EXE-I$, EXE-D$,
and EXE-MEM (when the active instruction in the Execu-
tion stage is add or sub) are addition hyperpaths. In a
multi-bit addition, a bit in the result may be changed due
to either a local path activation (i.e. a 1-0 or 0-1 situa-
tion at that bit position in addition inputs) or a carry-chain
activation from any lower order bit. These paths, in fact,
constitute the set of hyperpath functional paths, and the set
of primary transitions consists of one transition for each lo-
cal path activation and one for each carry-chain activation
path. For the EXE-MEM hyperpath as an example, this
can be achieved by setting the inst variable in Fig. 5 to
add, and setting data1 and data2 to values that would
induce local and carry-chain path activations. For example,
a carry-chain path from bit position 3 to bit position 7 can
be induced by setting data1 and data2 to 0x00000008 and
0x00000078, respectively.

II*. Increment hyperpaths: A simpler form of addition
hyperpaths that only adds one unit to the contents of the
origin RC. In LEON3 pipeline, hyperpath PC-PC is of this
type. The functional paths set for this type includes only
carry-chain paths from the LSB.

III. Logic hyperpaths: These hyperpaths perform a
logical operation on the contents of their origin RC. In LEON3
pipeline, hyperpath EXE-MEM (when the active instruction
in the Execution stage is a logic instruction) is a logic hy-
perpath. In a multi-bit logic operation, a bit in the result is
changed depending on the specific operation (i.e. AND, OR,
etc.), and the value of the operands at the same bit position.
Therefore, the set of primary transitions for the AND oper-
ation as an example include single bit zero to one transitions
of both operands. For the EXE-MEM hyperpath executing
AND operation as an example, this can be achieved by set-
ting the inst variable in Fig. 5 to and, and simultaneously
setting data1 and data2 to values in which only one and
two bits are set.

IV. Hybrid hyperpaths: These hyperpaths are combi-
nations of the previous types and can be characterized by
splitting them into their constructing parts. In LEON3, hy-
perpaths D-RA, D-RF, and RA-EXE are hybrid hyperpaths.

5.5 Accuracy Evaluation
In this subsection, we present an evaluation of the accu-

racy of the timing model developed for LEON3 processor. In
order to achieve a reliable evaluation, we perform the analy-
sis on each hyperpath separately, comparing the model with
detailed gate-level experiments using an industry-standard
timing analysis flow and a 45nm TSMC library with a nom-
inal voltage of 0.9V . For each hyperpath in the LEON3
pipeline, we perform 100 experiments using random input
data and measure the difference in the PoE calculated by the
analysis framework described in Section 4 assuming a work-
ing frequency of 1.15 times the nominal frequency. These
PoE values are then compared against the values estimated
by our model and the level of inaccuracy is determined for
each hyperpath. To demonstrate the robustness of our tim-
ing model to changes in voltage and temperature, we con-
structed separate model versions and performed the evalua-
tion at all TSMC-characterized corners. Table 1 shows the
relative errors in the calculated PoE for each hyperpath at
each voltage-temperature corner. The model is highly ac-
curate both across different hyperpaths and across corners
with an overall average error of 3.9% and maximum error of
6.7%.

6. FAST TIMING ANALYSIS WITH CTM
Having verified the accuracy of our timing model, we now

proceed to utilize it for enabling fast timing simulation of
large programs. In order to use the CTM we developed for
LEON3 in Section 5, we used TSIM [19], an instruction-level
simulator that enables accurate and cycle-true emulation of
LEON3. A pipeline analysis module was added on top of
the simulator to provide stage-level transition information of
the running code. The timing model was implemented in a
separate module which takes an instruction trace and stage-
level transition information from the simulator and produces
PoEs for each hyperpath every clock cycle. These hyperpath
PoEs are then combined with architecture level information
that determines the activated hyperpaths of instructions to
derive instruction error rates at different pipeline stages.
The resulting variation-aware simulation platform is much
faster than the timing analysis framework we developed in
Section 4 and enables the simulation of actual programs. We
selected five benchmarks (shown in Table 2) from MiBench
[8] to study the error behavior of representative programs.
In our experiments, we assumed a fixed frequency of 1.15
times the nominal frequency. Errors are assumed to occur
when a hyperpath is activated and its PoE exceeds 0.9.

6.1 Inter-Program Variation
Inter-Program Variation denotes the variability in the er-

ror rates of different programs when run on a fixed proces-

Table 2: Inter-Program Variation

Benchmarks Program Error Rate (%)

basicmath 1.728

bitcount 0.578

qsort 4.704

dijkstra 2.076

stringsearch 0.593

sor. In order to evaluate the variation in the error rates of
different programs, we ran the analysis on the five bench-
marks with their default input data. The Program Error
Rate (PER) is defined as the number of faulty instruction
executions divided by the total number of executed instruc-
tions. Note that an instruction may be executed multiple
times and cause errors in some of them. This is accounted
for by considering each dynamic instance of the instruction
rather than its static representation as an executed instruc-
tion. Table 2 summarizes the results. Across our small ex-
periment set, the error rate covers a range from around 0.6%
to around 4.7%, illustrating the large potential variation due
to the execution of different pieces of code.

6.2 Input Data Variability
What happens if we run a single program with different

sets of input data? In order to evaluate the amount of varia-
tion caused by the input data, we performed the analysis on
each benchmark with 100 randomly generated input data
sets. Table 3 shows the mean and standard deviation of
the 100 runs for each program, and the µ

σ
ratio as a mea-

sure of the variation caused by the input data. To put the
results into perspective, we note that other sources of vari-
ability cause tens of percent variations in chip performance
[4], which is similar to the values obtained for input data
variability. An interesting observation is that different pro-
grams demonstrate different sensitivities to changes in their
input data (ranging from µ

σ
values of 0.14 to 0.34), pointing

to potential opportunities for more in-depth analysis of this
effect, which is beyond the scope of this paper.

6.3 Intra-Program Variation
Intra-Program Variation denotes the variability in the er-

ror rates of the instructions of a program. The Instruction
Error Rate (IER) of an instruction is defined as the number
of its faulty executions divided by the total number of its ex-
ecuted dynamic instances. For example, IER of an instruc-

Table 3: Variation in PER due to input data vari-
ability

Benchmarks
Program Error Rate

Mean(%) Standard Deviation (%) µ
σ

basicmath 2.214 0.512 0.23

bitcount 0.754 0.254 0.34

qsort 3.124 0.784 0.25

dijkstra 2.854 0.412 0.14

stringsearch 0.943 0.267 0.28

tion which is executed 1000 times and fails 300 of them is
0.3. Less faulty instructions have IERs closer to zero, while
more vulnerable ones have IERs closer to one. The IER
distribution of a program determines the extent to which
some of its instructions are more or less faulty than others.
A sufficiently positively skewed distribution indicates poten-
tial opportunities for reducing the PER by focusing on the
more faulty instructions.

0.88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03
0.73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Error rate

0.88

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

D
en

si
ty

0.77

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.8

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6: Error rate distribution among various
static instructions. From top to bottom, figures cor-
respond to basicmath, bitcount, qsort, dijkstra,
and stringsearch.

Table 4: Distribution of errors among the hyperpaths and functional networks of LEON3.
Hyperpaths

Org PC PC PC I$ D D RA RF EXE EXE EXE EXE EXE MEM WB MEM D$ WB

Dest PC I$ D D RA RF EXE EXE PC I$ D$ MEM EXE EXE EXE WB WB RF

Networks Inst. Fetch Inst. Decode Operand Read Address Generation ALU Bypass Inst. Result

B
e
n
c
h
m

a
r
k
s basicmath 0.024 0.006 0.009 0.003 0.264 0.084 0.006 0.012 0.162 0.126 0.249 0.681 0.021 0.003 0.009 0.093 0.153 0.261

bitcount 0.009 0.006 0.005 0.002 0.121 0.049 0.006 0.001 0.038 0.031 0.092 0.121 0.003 0.002 0.001 0.011 0.057 0.092

qsort 0.114 0.042 0.006 0.012 0.792 0.714 0.060 0.030 0.384 0.306 0.294 0.473 0.018 0.006 0.036 0.588 0.372 0.366

dijkstra 0.136 0.048 0.004 0.012 0.216 0.248 0.008 0.024 0.168 0.152 0.136 0.536 0.016 0.020 0.016 0.124 0.244 0.268

stringsearch 0.012 0.003 0.001 0.001 0.068 0.074 0.008 0.002 0.091 0.064 0.052 0.151 0.002 0.007 0.001 0.064 0.019 0.079

Avg 0.059 0.021 0.005 0.006 0.292 0.234 0.018 0.014 0.169 0.136 0.165 0.228 0.012 0.008 0.013 0.176 0.169 0.213

Fig. 6 demonstrates the IER distributions of the five
benchmarks normalized by the total number of instructions.
Since most of the instructions never cause errors (i.e. IER =
0), for better visuality, we have zoomed into error rate val-
ues larger than zero and shown the densities at IER = 0
next to an arrow representing the truncated Y axis. All dis-
tributions start with a higher density at IERs closer to zero,
then significantly drop and remain rather uniform until they
rise again at IERs closer to one. The higher density of the
distributions at IERs close to one has been previously ob-
served and is referred to as instruction error locality [14].
The sharp spike at IER = 1 is caused by instructions that
fail their only execution. Excluding very small and very
large IERs, the distributions are neither negatively nor pos-
itively skewed and are more or less uniform.

The shape of IER distributions provides insight into the
efficacy of a large class of error-management techniques.
These techniques that are based on providing more vul-
nerable instructions with more relaxed timing requirements,
use architecture and circuit level techniques such as time
borrowing or increase timing gaurdbands by decreasing fre-
quency or increasing voltage. The main idea behind such
methods is to reduce the PER by paying a small penalty for
the most faulty instructions with the assumption that there
are not too many such instructions and that they are not
executed too many times that the error correction penalty
would nullify faster execution of less faulty instructions. The
IER threshold chosen to identify the target instructions de-
termines the efficiency of such strategies and IER distribu-
tions, along with instruction execution counts can be used
in finding the sweet spot in selecting the IER threshold. A
more positively skewed IER distribution means that such
techniques could be more beneficial to that program.

6.4 Physical Location of Errors
Another important aspect of the error behavior of a pro-

gram is the physical location of errors in hardware. How
reasonable is it to assume that errors occur in more critical-
path-populated regions of the processor? Furthermore, do
different programs cause similar error distributions among
these regions or do some programs cause significantly more
errors in specific regions? CTMs are immensely useful in
this kind of analysis as they provide a high level view into
the error behavior of various networks in hardware. Such
analysis is also important due to different sensitivities of the
processors to errors in their different modules. For instance,
an error in the fetch or decode stage will most probably
crash the system, while an error in the execution stage might
vanish completely or merely present some inaccuracy in the
result.

Table 4 presents the distribution of errors among the hy-

Figure 7: Percentage of errors in the most faulty
processor networks

perpaths and functional networks of LEON3. A hyperpath
is considered faulty when it produces an error and it is ac-
tivated by the instruction using it. The results show that
instruction decode, address generation, ALU, and instruc-
tion result (also containing the exception handling) networks
produce the majority of errors inside the processor, while in-
struction fetch, operand read, and bypass networks account
for a smaller portion. For better visuality, Fig. 7 shows
the percentage of errors in each network. It is interesting to
note that while most of the processor critical paths lie in the
ALU causing most of the timing failures, errors may occur
in ALU less often than in the less critical-path-populated
networks of instruction decode and address generation. We
speculate that this is due to the fact that many instruc-
tions do not activate the highly critical paths of the ALU
resulting in many healthy ALU operations, while instruction
decode and address generation networks perform more sim-
ilar operations which activate the same critical paths most
of the time. This observation stresses the importance of a
comprehensive analysis in the evaluation of software error
management techniques. An imperfect assumption that the
arithmetic execution network produces the majority of er-
rors may lead to techniques that reduce ALU errors by, for
example, spacing out instructions that heavily activate its
critical paths, while neglecting or even giving rise to errors
occurring in other vulnerable networks.

Along the axis of programs, we observe a significant vari-
ation in the percentage of errors occurring in different net-
works. For instance, basicmath which contains more com-
plex mathematical operations induces almost three times
more errors in the ALU than the control-intensive qsort
that has most of its errors in the decoding network, while
the memory intensive stringsearch produces more errors

in the address generation and instruction result networks
which also handle cache misses. This observation stresses
the potential efficacy of workload-aware methods that con-
sider both error rates and error locations based on the run-
ning code.

7. CONCLUSIONS
We have presented an analysis of the error behavior of

erroneous systems (i.e. systems that allow timing errors).
Performance of these systems is heavily dependent on the
location of the errors and the rate at which they occur. We
demonstrated the important role of software in determining
this error behavior by developing a high level variation-aware
timing model for an in-order RISC processor. The model,
called Clustered Timing Model (CTM), was verified using an
accurate timing analysis framework and used for fast tim-
ing simulation in the presence of process variation. Through
these simulations, we introduced and characterized four as-
pects of how the error behavior is affected by the running
software. Inter- and Intra-Program Variation were proposed
as measures of the error rate variability in different programs
and among instructions of a program. It was also demon-
strated that input data can cause performance variations
comparable to other sources of variability such as process
variation. Finally, an analysis of the physical location of er-
rors in hardware was presented. We identified the regions in
which most errors occur and how different programs change
the distribution of errors among them.

8. ACKNOWLEDGMENTS
This material is based upon the work supported by the Na-

tional Science Foundation’s Variability Expedition in Com-
puting under Award No. 1029783. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

9. REFERENCES
[1] C. Forzan, D. Pandini, “Statistical static timing analysis: A

survey”, Integration, the VLSI Journal, vol. 42, pp.
409-435, June 2009.

[2] D. Blaauw, K. Chopra, A. Srivastava, L. Scheffer,
“Statistical Timing Analysis: From Basic Principles to
State of the Art,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol.27,
pp.589-607, April 2008.

[3] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K.
Bowman, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar,
V. De, S. Borkar, “Within-die variation-aware
dynamic-voltage-frequency scaling core mapping and
thread hopping for an 80-core processor,” Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
IEEE International , pp.174-175, Feb. 2010.

[4] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R.K. Gupta, R.
Kumar, S. Mitra, A. Nicolau, T.S. Rosing, M.B. Srivastava,
S. Swanson, D. Sylvester, “Underdesigned and
Opportunistic Computing in Presence of Hardware
Variability,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, pp.8-23, Jan. 2013

[5] M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C.
Lefurgy, A.J. Drake, L. Pesantez, T. Gloekler, J.A. Tierno,
P. Bose, A. Buyuktosunoglu, “Introducing the Adaptive
Energy Management Features of the Power7 Chip,” Micro,
IEEE , vol.31, no.2, pp.60-75, March-April 2011.

[6] D. Ernst, Nam Sung Kim; S. Das, S. Pant, R. Rao, T.
Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, T.

Mudge, “Razor: a low-power pipeline based on circuit-level
timing speculation,” Microarchitecture, MICRO-36.
Proceedings. 36th Annual IEEE/ACM International
Symposium on , pp.7-18,

[7] L. Wanner, S. Elmalaki, Liangzhen Lai, P. Gupta, M.
Srivastava, “VarEMU: An emulation testbed for
variability-aware software,” Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2013 International
Conference on, pp.1-10, Sept. 29 2013-Oct. 4 2013

[8] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T.
Mudge, R.B. Brown, “MiBench: A free, commercially
representative embedded benchmark suite,”Workload
Characterization, IEEE International Workshop on ,
pp.3-14, 2001.

[9] S. Rehman, M. Shafique, F. Kriebel, J. Henkel, “Reliable
software for unreliable hardware: embedded code
generation aiming at reliability,” In Proceedings of the
seventh IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis
(CODES+ISSS ’11). ACM, New York, NY, USA, 237-246.

[10] A. Rahimi, L. Benini, R.K. Gupta, “Analysis of
instruction-level vulnerability to dynamic voltage and
temperature variations,” Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2012,
pp.1102-1105, March 2012.

[11] A. Rahimi, L. Benini, R. Gupta, “Application-Adaptive
Guardbanding to Mitigate Static and Dynamic Variability,”
Computers, IEEE Transactions on , pp. 1-10, 2013.

[12] P. Ndai, N. Rafique, M. Thottethodi, S. Ghosh, S. Bhunia,
K. Roy, “Trifecta: A Nonspeculative Scheme to Exploit
Common, Data-Dependent Subcritical Paths,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on ,
vol.18, no.1, pp.53-65, Jan. 2010.

[13] S. Roy, K. Chakraborty, “Predicting timing violations
through instruction-level path sensitization analysis,” In
Proceedings of the 49th Annual Design Automation
Conference (DAC ’12). ACM, New York, NY, USA,
1074-1081.

[14] J. Xin, R. Joseph, “Identifying and predicting
timing-critical instructions to boost timing speculation,” In
Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-44 ’11). ACM,
New York, NY, USA, 128-139.

[15] G. Hoang, R.B. Findler, R. Joseph, “Exploring circuit
timing-aware language and compilation,” SIGPLAN Not.
47, 4 (March 2011), 345-356.

[16] J. Sartori, R. Kumar, “Architecting processors to allow
voltage/reliability tradeoffs,” In Proceedings of the 14th
international conference on Compilers, architectures and
synthesis for embedded systems (CASES ’11). ACM, New
York, NY, USA, 115-124.

[17] J. Samandari-Rad, M. Guthaus, R. Hughey, “VAR-TX: A
variability-aware SRAM model for predicting the optimum
architecture to achieve minimum access-time for yield
enhancement in nano-scaled CMOS,” Quality Electronic
Design (ISQED), 13th International Symposium on ,
pp.506-515, March 2012.

[18] D. Sinha, Hai Zhou; N.V. Shenoy, “Advances in
Computation of the Maximum of a Set of Gaussian
Random Variables,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on , vol.26, no.8,
pp.1522-1533, Aug. 200

[19] Aeroflox Gaisler, “TSIM ERC32/LEON Simulator,”
http://www.gaisler.com/index.php/products/simulators/t-
sim

[20] S. Nadarajah, S. Kotz, “Exact Distribution of the Max/Min
of Two Gaussian Random Variables,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on , vol.16,
no.2, pp.210-212, Feb. 2008

[21] TSMC 45nm standard cell library release note,
TCBN45GSBWP, version 120A, Nov. 2009.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

