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Abstract: Process variation has already emerged as a major concern in design of multi-processor system on chips
(MPSoC). In recent years, there have been several attempts to bring variability awareness into the task scheduling
process of embedded MPSoCs to improve performance yield. This study attempts to provide a comparative study of
the current variation-aware design-time task and communication scheduling techniques that target embedded MPSoCs.
To this end, the authors first use a sign-off variability modelling framework to accurately estimate the frequency
distribution of MPSoC components. The task scheduling methods are then compared in terms of both the quality of
the final solution and the computational complexity of the scheduling algorithm. Experimental results on a wide range
of benchmarks show that ILP-based task scheduling technique, while guaranteeing the optimality of the solution, can
be costly for large application task graphs. On the other hand, one-pass heuristic method is 795 times faster than
ILP-based method on average, but is ineffective to find reasonable solutions in the case of large task graphs. Finally,
metaheuristic approaches can produce near-optimal schedules within 1–2% of the optimal solutions on average, with
up to 7.8 times faster execution time compared with ILP-based approach.
1 Introduction

The ever-increasing process variability in CMOS technology has
made it inevitable to incorporate variability analysis into
system-level design techniques when dealing with today’s
multi-processor system on chips (MPSoC). The variation in key
process parameters such as dopant concentration, channel length
and oxide thickness of transistors directly affect total performance
and power consumption of each core of a system-on-chip,
rendering them as essentially random variables. Traditional
worst-case corner-based approach has proved too pessimistic as
transistor size shrinks, making it essential to move towards
statistical analysis to obtain detailed and accurate information on
the behaviour of system components.

In recent years, there have been several attempts to adopt
variability analysis in design-time task scheduling for embedded
MPSoCs. Wang et al. [1] was the first to address this problem by
introducing a constructive (one-pass) heuristic static task
scheduling method for performance yield maximisation. The
proposed technique starts from the root node of the task graph and
selectively assigns tasks to MPSoC cores until all of the tasks are
scheduled. In each step, the selection of the task to be scheduled is
based on a metric called dynamic priority (DP) of tasks. They later
extended their work in [2] by adding an NoC-based
communication backbone in the variability-aware mapping
scheme. As another work, Singhal et al. [3] introduced a dynamic
programming-based variation-aware task scheduling and
configuration selection algorithm, that is limited to applications
with only series or parallel task graphs. Recently, Mirzoyan et al.
[4] developed some heuristic variation-aware task scheduling
methods that are limited to real-time streaming applications with
synchronous data flow graph (SDFG) model.

There have been several attempts to incorporate metaheuristic
approaches such as genetic algorithm (GA) or simulated annealing
(SA) to solve the variation-aware task scheduling problem. For
example in [5], Chon et al. presented a GA-based task scheduling
method to maximise performance yield while taking resource
sharing into account. Recently, Huang et al. [6] presented a
quasi-static SA-based task scheduling method that is followed by a
clustering-based performance yield enhancement procedure. In our
previous work [7, 8], we presented GA-based and SA-based
variation-aware task and communication scheduling algorithms for
power yield maximisation under performance yield constraint.

Integer linear programming (ILP) is also used to find the optimal
solution of the variation-aware task scheduling problem. Singhal
et al. [9] recently developed an ILP-based variation-aware task
replication and load balancing technique for pipelined configurable
MPSoC. Bhardwaj et al. [10] also introduced a mixed ILP-based
task scheduling technique for power-performance yield
optimisation for MPSoCs. Finally, Ghorbani [11] proposed an
ILP-based variation-aware task scheduling technique for power
yield optimisation under performance constraints.

Table 1 summarises the aforementioned work and classifies them
based on some of their characteristics. As shown in this table, most
of the previous work either use a simplistic model of process
variation, target specific types of application task graph or does
not consider the timing overhead of the underlying on-chip
interconnection network (communication scheduling). The main
objective of this paper is to provide a comparative study of the
current variation-aware design-time task and communication
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Table 1 Classification of the most recent design-time variation-aware task scheduling techniques

Authors Optimisation goal Application model Process variation model Communication scheduling

Heuristic Algorithms
Wang [2] performance yield wDAG1 Gaussian frequency distribution
Singhal [3] performance yield SPDAG2 NA, timing yields of cores are given
Mirzoyan [4] performance yield SDFG3 Discretised Gaussian frequency distribution
Metaheuristic-based Algorithms
Chon [5] performance yield DAG Discretised Gaussian frequency distribution
Huang [6] performance yield DAG VARIUS [12], An approximative model to propagate

variability in Leff and Vth to the frequency of cores
Momtazpour [7] power yield, performance yield wDAG Gaussian frequency distribution
Momtazpour [8] power yield, performance yield wDAG an approximative model to propagate variability in

Leff, Vth and Tox to the frequency of cores
ILP-based Algorithms
Singhal [9] throughput, performance yield DAG NA, timing yields of cores are given
Bhardwaj [10] power-performance yield DAG Gaussian frequency distribution
Ghorbani [11] power yield, performance yield wDAG Gaussian frequency distribution

1 Weighted directed acyclic graph.
2 Serial-parallel directed acyclic graph.
3 Synchronous data flow graph.
scheduling techniques that target embedded MPSoCs, by using a
more realistic model of process variation, and under a generalised
model of application task graph. To this end, and as the main
contributions of this paper:

(i) We used our previously developed sign-off variability modelling
framework [13] to accurately estimate the frequency distribution of
MPSoC components. This enabled us to have a more realistic
model of process variation in our analysis.
(ii) We also proposed a DP -based heuristic task and communication
scheduling method (called modified heuristic task scheduling
[MHTS]) which can provide a good compromise between the
quality of solutions and execution time.

We also applied a few modifications on the previously proposed
task scheduling methods to provide fair comparison. The task
scheduling methods are then compared with respect to both the
quality of the final solution and the computational complexity of
the scheduling algorithm. Experimental results on a wide range of
benchmarks show that ILP-based task scheduling technique, while
guaranteeing the optimality of the solution, can be costly for large
application task graphs. On the other hand, one-pass heuristic
method is 795 times faster than ILP-based method on average, but
is ineffective to find reasonable solutions in the case of large task
graphs. Moreover, our developed heuristic method shows a good
compromise between the quality of solutions (within 2.5% of the
optimal solution) and execution time (25.3 times faster than the
ILP-based method). Finally, metaheuristic approaches can produce
near-optimal schedules within 1–2% of the optimal solutions on
average, with up to 7.8 times faster execution time on average.

The rest of the paper is organised as follows. Section 2 describes
our process variation model. In Section 3, we formally define and
formulate the MPSoC task scheduling problem. In Section 4, we
briefly discuss various heuristic, metaheuristic and ILP-based task
and communication scheduling approaches that are later used in
the comparative study. The computational complexity of the
Fig. 1 Overview of VAREX variability modelling framework [13, 14]
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mentioned approaches are then discussed in Section 5. Section 6
provides experimental results of evaluating and comparing the
mentioned task and communication scheduling algorithms. The
conclusion is then followed in Section 7.
2 Process variation model

As stated in the previous section, most of the variation models used
previously at MPSoC-level either assume simple Gaussian
distribution for frequency of cores [2, 4, 5, 7, 10, 11] or use
approximative models to propagate the variations in transistor-level
parameters to system-level components [6, 8]. For example, in
VARIUS [12], the variation model assumes uniform distribution of
identical critical paths across die, where each of the critical paths
contains similar number of identical FO4 Inverter. Assuming
normal distribution for within-die (WID) and die-to-die (D2D)
variations in Leff and Vth, it then propagates these variations to the
delay of each gate, delay of each critical path and finally the
frequency of the processing core. However, with the ever
increasing amount of process variation, and the growing
complexity of MPSoCs, we believe that the above assumptions
may not be satisfactorily accurate for current and future
technologies. Therefore to have an accurate and fair evaluation of
the current variation-aware system-level techniques, more
sophisticated and realistic models of process variation should be
incorporated in the design process.

In this paper, we used our developed variability modelling
framework VAREX, which was previously introduced and
evaluated in [13, 14], to estimate the frequency distribution of
MPSoC components. VAREX tries to minimise the
aforementioned simplifying assumptions to produce the most
accurate estimations while being fast enough to be included in
system level VLSI CAD tools. This section tries to provide a brief
overview of VAREX for being self-contained, yet the readers can
refer to [13, 14] for more details.
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Table 2 Symbols and definitions

System Parameters:
ns Number of scenarios in Monte–Carlo simulation
nt Number of tasks in the task graph
ne Number of edges in the task graph
Fig. 1 shows an overview of VAREX variability modelling
framework. It has three components which are added to the
traditional design steps: variation map generation, cell
characterisation and variability analysis. We briefly review these
steps in the following section. For more details, see [13, 14].
np Number of processors in the MPSoC
cti,p Execution cycle count of the ith task on the pth

processor
cej Transfer cycle count of the jth edge on the shared bus
System Constraints:
⌈T⌉ Timing deadline of the task graph
Objective:
YT Timing yield: Percentage of chips that meet (are able to

execute the whole task graph not later than) ⌈T⌉ for a
given task assignment and schedule
2.1 Variation map generation

This step is responsible for simulating the variability in the
manufactured chips. Similar to [12, 15, 16], the random and
systematic components of both D2D and WID variations are
modelled as zero-mean normal distributions. Therefore each
process parameter (Vth and Leff) is modelled as a random variable
with four Gaussian independent components that correspond to
systematic D2D variation, random D2D variation, systematic WID
variation and random WID variation. As in [17], we assume that
each of the mentioned components contribute equally to the total
variation. We use R statistical analysis package [18] to generate
10 000 different sets of WID and D2D variation maps for each of
the process parameters while taking spatial correlation of the
effective channel length into account. A variation map reflects the
amount of variation in a process parameter across the surface of
the die. Similar to [12], we use the spherical function (1) to
incorporate spatial correlation of the effective channel length

r(n) = 1− 3r

2F
+ r3

2F3 r ≤ F

0 otherwise

⎧⎨
⎩ (1)

Here, ρ(r) is the correlation function, r is the distance between two
points on the chip and Φ is the range, the distance between
two points where they will be no longer correlated.
2.2 Cell characterisation

The goal of this step is to accurately model the effect of process
variation on the delay of each type of cell. As discussed in [12],
with a pin transition defined as its passing of V/2, and measuring
the propagation delay as the mean of the elapsed times between all
low-to-high and high-to-low transitions on the gate inputs that
would toggle the gate output and their corresponding output
transition, the propagation delay of sub-micron cells is
proportional to

Tg /
Leff · V

m(V − Vth)
a (2)

where α is typically 1.3 and μ is the mobility of carriers. We inspect
the effect of Vth and Leff variations on the delay of each cell of the
standard cell library using Monte-Carlo-based HSPICE
simulations. Then, we find the best mathematical representation of
the delay of each cell as a function of Vth and Leff by fitting the
gathered data to (2). We then use these results in the variability
analysis stage to produce final frequency distributions.
2.3 Variability analysis

We finally use the following procedure to estimate the frequency
distribution of the MPSoC components. First, using a static timing
analyser, the path information including the number, type, delay
and location of the cells in all of the paths of the design are
extracted from the final post-P&R layout of the MPSoC. Then, for
each variation map (that simulates a manufactured chip), and
based on the delay model generated in the cell characterisation
step, the variation-induced delay of each path is calculated and the
frequency of the MPSoC is determined. Repeating this calculation
for a large number of variation maps will provide us with an
accurate estimate of the frequency distribution of each core.
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3 Problem formulation

In this paper, we use timing yield (YT), which was first introduced in
[1], as our optimisation goal. It is defined as the percentage of
manufactured chips that meet the timing constraint, ⌈T⌉, for a
given task schedule, as shown in (3)

YT = Prob T , T⌈ ⌉( ) (3)

Using the notation in Table 2, we formally define the task and
communication scheduling problem as follows:

Problem: Assume that the target application is modelled as a
weighted directed acyclic graph (wDAG) G with nt tasks and ne
communication edges. Moreover, assume that the target MPSoC
has np processor core and a shared bus, with given execution cycle
count cti, p of each task on each processor (1≤ i≤ nt, 1≤ p≤ np)
and transfer cycle count cej of each edge on the shared bus (1≤
j≤ ne). The problem is to find a proper schedule/assignment of
tasks and communication edges on MPSoC components, such that
the timing yield (YT) is maximised.

This problem can actually be viewed as a statistical counterpart of
a deterministic MPSoC task scheduling problem.
4 Variation-aware MPSoC task and
communication scheduling

For our comparative study, we use five different approaches to solve
the variation-aware MPSoC task and communication scheduling
problem: (i) An ILP-based task scheduling method, previously
proposed in [11] to find the optimal solution, (ii) a fast heuristic
task scheduling technique, previously used in [2] to find a
reasonable local solution efficiently, (iii) another heuristic method
that is proposed in this work and is inspired from the work in [2],
(iv) a GA-based task scheduling technique [7] and (v) an
SA-based task scheduling technique [8]. This section provides a
brief overview of the mentioned approaches, as well as minor
modifications applied to them to provide fair comparison.
4.1 ILP-based task and communication scheduling

ILP is used to find the optimal allocation and scheduling of tasks and
communication edges on MPSoC resources in [9–11]. To the best of
our knowledge, the work in [11] addressed the most general form of
this problem by using wDAGs as the target application model and
providing communication scheduling along with the task
scheduling process. However, the mentioned work used a
simplistic model of process variation where the frequency of cores
follow Gaussian distribution. Moreover, the objective was to
maximise power yield while taking performance yield at the
desired level. To provide fair comparison, we modified the
proposed ILP formulation to address performance yield
maximisation. The following parameters, variables and constraints
are used to formulate the ILP-based task scheduling method:
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4.1.1 Parameters: The a priori information of the given
application task graph and MPSoC architecture is modelled using
the following constant parameters:

np number of processors in the MPSoC architecture;
nt number of tasks in the application task graph;
ne number of communication edges in the application task graph;
G an nt × nt adjacency matrix representing the graph structure;
Ct an nt × np matrix denoting the execution cycle count of tasks on
MPSoC processors;
Ce a 1 × ne vector denoting the transfer cycle count of communication
edges on MPSoC shared bus;
Dp an np × ns matrix denoting the clock period of MPSoC processors
in all ns test chips;
Dc a 1 × ns vector denoting the clock period of MPSoC shared bus in
all ns test chips;
K a large enough constant.

4.1.2 Variables: The following variables are used to model the
ILP-based task and communication scheduling problem:

St An nt × ns real matrix that represents the start time of tasks in all ns
test chips.
Se An ne × ns real matrix that represents the start time of
communication edges in all ns test chips.
Xt An nt × np boolean matrix that stores the task assignment
variables; the entry Xt(i, p) is true if the ith task is allocated on the
pth processor.
Xe A 1 × ne boolean vector that stores the task assignment variables;
the entry Xe( j) is true if the jth edge is scheduled on the shared bus.
Ot An nt × nt boolean matrix that stores the task order variables; the
entry Ot(i, i′) is true if task i is scheduled to run before task i′, and
both are allocated on the same processor.
Oe An ne × ne boolean matrix that stores the communication order
variables; the entry Oe( j, j′) is true if communication edge j is
scheduled to run before communication edge j′, and if both are
allocated on the same communication route.
M A 1 × ns boolean vector that represents timing constraint
satisfaction variables; the entry M(k) is true if the system meets
timing constraint in the kth test chip.

4.1.3 Constraints: The constraints are formulated as follows:

c1: A task must be assigned to only one processor

∑np
p=1

X t(i, p) = 1 (4)

where i∈ [1, 2, …, nt].
c2: The order of execution of any two tasks that run on the same
processor must be unique

Ot(i, i
′)+ Ot(i

′, i) = 1 (5)

where i, i′∈ [1, 2, …, nt] and i < i′.
c3: The order of execution of any two data transfers that run on the
shared bus must be unique

Oe(j, j
′)+ Oe(j

′, j) = 1 (6)

where j, j′∈ [1, 2, …, ne] and j < j′.
c4: Eliminate intra-processor communications: do not assign a data
transfer on the shared bus if both its source and sink tasks are
assigned to the same processor

X e(j)+ X t(i, p)− X t(i
′, p) ≥ 0 (7)
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where i, i′∈ [1, 2,…, nt] and i≠ i′, p∈ [1, 2,…, np], j∈ [1, 2,…, ne]
and j refers to the index of the data transfer between ith and i′th tasks.
c5: The execution of any two tasks that run on the same processor
cannot be overlapped

St(i, s)+ C t(i, p)Dp(p, s)+ K(X t(i, p)

+ X t(i
′, p)+ Ot(i, i

′)− 3) ≤ St(i
′, s) (8)

where i, i′∈ [1, 2, …, nt] and i≠ i′, p∈ [1, 2, …, np] and s∈ [1, 2,
…, ns].
c6: The execution of any two data transfers that run on the shared bus
cannot be overlapped

Se(j, s)+ X e(j)Ce(j)Dc(s)+ K(X e(j)

+ X e(j
′)+ Oe(j, j

′)− 3) ≤ Se(j
′, s) (9)

where j, j′∈ [1, 2, …, ne] and j≠ j′ and s∈ [1, 2, …, ns].
c7, c8: Constraints that hold precedences imposed by the application
task graph: A data transfer cannot be started until the execution of the
task that provides its data ends. Similarly, the execution of a task
cannot be started until the data transfer that provides its data ends

St(i, s)+
∑np
p=1

C t(i, p)Dp(p, s)X t(i, p)− Se(j, s) ≤ 0 (10)

Se(j, s)+ Ce(j)Dc(s)X e(j)− St(i
′, s) ≤ 0 (11)

where j∈ [1, 2, …, ne] and j refers to the index of the data transfer
between ith and i′th tasks, i, i′∈ [1, 2, …, nt] and i≠ i′ and s∈ [1,
2, …, ns].
c9: Set the value of M, if the execution of all tasks ends before the
time limit ⌈T⌉

St(i, s)+
∑np
p=1

C t(i, p)Dp(p, s)X t(i, p)+ K(M(s)− 1) ≤ T⌈ ⌉ (12)

where i∈ [1, 2, …, nt] and s∈ [1, 2, …, ns].

4.1.4 Objective function: The goal is to maximise the
performance yield YT. Therefore we have

YT =
∑ns
s=1

M(s) (13)

4.2 Heuristic task and communication scheduling

In this section, we present two variation-aware heuristic methods for
task and communication scheduling for MPSoCs. The first one,
which is called heuristic task scheduling (HTS) throughout this
paper, was proposed in [2] and to the best of our knowledge, is
the only heuristic variation-aware task and communication
scheduling method in the field of MPSoCs that use weighted
directed acyclic task graphs as the application model. However, as
we will show in the experimental results section, this method
becomes inefficient as the size of the task graph increases. This
motivated us to provide a modified version of HTS (called MHTS)
that can produce more efficient results by sacrificing execution
time of the algorithm over the quality of the solutions. We briefly
review the mentioned methods in the rest of this section.

4.2.1 Heuristic task scheduling: As proposed in [2], HTS is a
one-pass dynamic-list-scheduling-based task and communication
scheduling algorithm, that starts from the root node of the task
graph and selectively assigns ready tasks (for which the precedent
tasks have already been scheduled) to MPSoC resources until all
of the tasks are scheduled. The corresponding pseudo code for
HTS is given in Algorithm 1 (see Fig. 2).
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 4, pp. 221–229
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Fig. 2 Pseudo code of HTS, a variation-aware task and communication scheduling heuristic proposed in [2]
In each step, the selection of the task to be scheduled is guided
through the definition of a metric called DP of tasks, given as
follows [2]

DP(taski) = MaxYield(taski)+ DYield(taski) (14)

where MaxYield(taski) = max(Yield(taski, p)), for p∈ [1, 2, …, np]
and ΔYield(taski) is the difference between the highest yield and
the second highest yield, which stands for the yield loss if the ith
task is not scheduled onto its preferred MPSoC resource.
4.2.2 Modified heuristic task scheduling: As we will show in
the experimental results section, HTS becomes inefficient as the size
of the task graph grows. This is because of the one-pass nature of the
algorithm, which cannot benefit from rescheduling of tasks for
improving the quality of the solution. Moreover, the computation
of DP is only performed for the ready tasks, ignoring the
criticality of the unready ones. This motivated us to provide a
more sophisticated DP-based heuristic method called MHTS, as
described as below.

Algorithm 2 (see Fig. 3) shows the pseudo code of the proposed
MHTS heuristic task and communication scheduling algorithm.
We first compute the DP of all paths of the task graph and select
the N most critical paths (MCP). We define the DP of a path as

DP(pathi) = 1− Yield(pathi) (15)

where Yield(pathi) is defined as the probability of the path to meet
the timing deadline of the system ⌈T⌉. This definition enables us
to focus on the rescheduling of paths that contribute to more yield
loss. Then, starting from the MCP, we compute the DP of all tasks
within this path (using the same approach as in [2]), and choose
the task (communication) reschedule with highest DP. We commit
this reschedule if it improves the total timing yield. Then, we
update the task graph and proceed with the next iteration of the
algorithm. If the timing yield is not improved by this reschedule,
we discard MCP and try the next critical path. If all paths are
traversed and no improvement is possible, the algorithm stops.

4.3 Metaheuristic task and communication scheduling

In this paper, we use previously proposed GA-based [7] and
SA-based [8] techniques to solve variation-aware task and
IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 4, pp. 221–229
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communication scheduling problem. This section briefly reviews
the mentioned methods for being self-contained.

4.3.1 GA-based task scheduling: We chose [7] as our
candidate for GA-based scheduling methods since it is, to the best
of our knowledge, the only variation-aware method that targets
both task and communication scheduling. As described in [7],
each solution of the scheduling problem is modelled as a
chromosome with 2nt + ne genes: Part-1 with nt integer values
representing the task assignment (i.e. the index of processors to
which the tasks are assigned), and Part-2 with nt + ne integer
values representing the order of execution of tasks and
communications (i.e. the index of tasks and data transfers in the
order specified in the solution).

For the crossover function, we used a simple two-point crossover
operator for Part-1 of the solution where the genes between two
randomly chosen locations of the parent chromosomes are
combined to form the child chromosome. For Part-2, a specialised
form of single-point crossover operator is used to preserve the
uniqueness of indexes of tasks and communications in the
reordered chromosome [7]. To summarise it, given two parent
chromosomes parent1 and parent2, a crossover point k, 1 < k < np +
ne, is selected randomly. The genes [1, k] of parent2 are copied to
the genes [1, k] of child chromosome. To fill the remaining genes
[k + 1, nt + ne] of the child chromosome, chromosome parent1 is
scanned from the first to the last gene and each node that is not
yet in the child is added to the next empty position of the child,
while preserving its order in parent1.

For the mutation function, a randomly picked gene from Part-1 is
randomly mutated to a new value in the range [1, 2, …, np]. For
Part-2, and to preserve the uniqueness of indexes of tasks and
communications in the reordered chromosome, the values of two
randomly picked genes are swaped.

4.3.2 SA-based task scheduling: As described in [8], the only
SA-based variation-aware task and communication scheduling
method in the literature, the solution is composed of 2nt + ne
integer values similar to our GA-based method. The only
difference is that it uses an annealing procedure that works as
follows: For Part-1 of the solution (the task assignment part), it
alters the value of a randomly picked node. For Part-2, it first
traverses the task graph to find a set of all tasks (and
communications) that can be reordered. Then it simply picks two
random tasks and two random communications from the set and
reorder them to form a new solution.
225



Fig. 3 Pseudo code of MHTS, the proposed variation-aware task and communication scheduling heuristic
5 Complexity analysis

In this section, we analyse the computational complexity of the
mentioned approaches in terms of number of tasks (nt), number of
processors (np), and number of sample MPSoC chips (ns).

5.1 ILP-based approach

As suggested by Schrijver [19], the average-case computational
complexity of the Simplex method (which we use here as our
solver) is O(min(m, n) ×m × (n +m)) in practice, were n is the
number of variables and m is the number of constraints. According
to the proposed ILP problem in Section 4.1, we have

n = n2t + n2e + nt(ns + np)+ (ne + 1)(ns + 1) (16)

and

m = (n2t + n2e − nt − ne) nsnp +
1

2

( )

+ ne(2ns + np)+ nt(ns + 1)+ 1

(17)

Assuming n̂ = nt + ne and ns ≫ n̂, the overall complexity of the ILP
problem will be O(n̂5n3sn

2
p).

5.2 Heuristic approaches

As illustrated in Algorithm 1 (Fig. 2), there are two loops in HTS.
The outer loop runs nt + ne times. The number of iterations of the
inner loop depends on the structure of the task graph, varying
from 1 to nt + ne. To compute DP of a task, we inspect all nt + np
possible locations in the task queues of processors (or ne locations
of the shared bus queue in case of data transfers), for which we
226
compute timing yield using depth first search method with the
complexity of O(ns(nt + ne)). Therefore the overall complexity of
HTS is O(n̂4ns).

As illustrated in Algorithm 2 (Fig. 3), there are three loops in
MHTS. The innermost loop has the computational complexity of
O(n̂2ns) similar to HTS. However, the number of iterations of the
two while loops, ni, depends on the task graph structure. Therefore
the overall computational complexity will be O(n̂2nsni).

5.3 Metaheuristic approaches

As suggested by Brucker [20], the computational complexity of a
GA-based multiprocessor task scheduling algorithm can be
described as O(ninchO(Fitness)), where ni and nch are the number
of iterations and the number of chromosomes in the population,
respectively. Our GA-based method uses a depth-first-search-based
fitness function with the complexity of O(ns(nt + ne)) to compute
timing yield for a given chromosome. It is also suggested in [21]
that the optimal value of nch is somewhere between n and 2n (n is
the variable size), rendering its complexity as O(n). This leads to
an overall computational complexity of O(n̂2nsni).

For the SA-based approach and similar to GA, the computational
complexity can be described as O(niO(Fitness)) since nch = 1. Using
the same fitness function as our GA-based method, the overall
complexity of the SA-based method will be O(n̂nsni). Note that for
our GA-based and SA-based methods, the crossover, mutation and
annealing operators are designed such that their computational
complexity does not scale with problem size [7, 8].
6 Experimental results

In this section, we provide the experimental results of applying our
variation-aware task and communication scheduling algorithms on
real world benchmarks.
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Fig. 4 LEON MP final post-P&R layout along with the normalised frequency distribution of cores

a Post-P&R layout of LEON MP system
b Normalised frequency distribution of its processor cores
6.1 Experimental setup

Our target MPSoC is LEON MP, a configurable LEON3
multi-processor system with four identical LEON3 processors [22].
LEON MP is a shared-memory and shared address-space
multiprocessor system. The LEON3 processor is a synthesisable
VHDL model of a 32-bit processor compliant with the SPARC V8
architecture. Its integer unit consists of a seven stage pipeline; and
there are hardware multiply, divide and MAC units and separate
instruction and data caches. The processor is particularly designed
for system-on-a-chip designs. It is also highly configurable and the
designer can configure functional units, register windows and
instruction and data caches.

In our LEON MP system, LEON processors are attached to a
shared AMBA high performance bus. The source code of the
multiprocessor was synthesised using synopsys design compiler
[23] and NanGate 45 nm open cell library [24], and then placed
and routed by using Cadence SoC Encounter [25] to produce the
final layout. Then, the number of paths along with the location,
type and delay of all gates of the design are extracted using
Synopsys PrimeTime [23]. The extracted information are then feed
into our variability modelling framework to generate the frequency
distributions of MPSoC cores. Fig. 4 shows the LEON MP final
post-P& R layout along with the normalised frequency distribution
of cores obtained using the above approach.

We evaluate the performance of the variation-aware task
scheduling methods using two sets of embedded system
benchmarks from E3S [26] and MiBench [27]. To this end, we
first cross-compiled the source code of benchmarks using LEON
BCC cross-compiler and then measured the execution cycle count
of tasks using LEON cycle-true simulator, TSIM [28]. The task
Table 3 GA parameters

Parameters Values

population size 2N
variable size N
scaling function rank
selection
function

stochastic uniform

elite count 0.2N
crossover
fraction

0.8

stopping
criteria

stall limit = 10 000, or when it converges to the optimal
value obtained by ILP-based method

IET Comput. Digit. Tech., 2015, Vol. 9, Iss. 4, pp. 221–229
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scheduling methods were implemented using Matlab and its GA
and SA optimisation toolboxes [29]. The GA and SA parameters
are shown in Table 3 and 4, respectively. The simulations for
GA-based and SA-based methods were run 100 times and the
average values are reported. The ILP model was solved using IBM
CPLEX optimiser [30]. The simulations were conducted on a 3
GHz quad-core computer with 12 GB of RAM.
6.2 Results

Table 5 shows the timing yields obtained by applying our task and
communication scheduling algorithms on E3S and MiBench
benchmarks, at various timing constraint scenarios. The number of
nodes in each task graph, n̂ = nt + ne, is also shown besides the
name of each task graph. Three different timing constraint
scenarios are used for our comparative study. We first measured
the best achievable execution time of each benchmark assuming
100% timing yield. Then we used 70, 80 and 90% of this value as
our timing constraints.

As shown in Table 5, HTS is able to find good solutions in the
case of small task graphs. However, as the size of task graph
grows, it becomes ineffective in finding a proper solution. In case
of telecom as our biggest task graph, HTS results in schedules
with zero timing yield in all three scenarios, rendering it
ineffective in case of large task graphs. On the other hand, the
quality of the solutions produced by MHTS surpasses HTS,
because of its iterative nature and the use of path DP to guide the
task selection process. Our metaheuristic approaches are also
effective in finding near-optimal solutions, even for large task
graphs.

Table 6 also shows the execution time of the mentioned methods
in seconds. As illustrated in this table, HTS is multiple order of
magnitude faster than the other algorithms since it is a one-pass
Table 4 Simulated annealing parameters

Parameters Values

variable size N
reannealing interval 100
initial temperature 100
temperature update
function

initial temperature ×0.95iteration

stopping criteria stall limit = 20 000, or when it converges to the
optimal value obtained by ILP-based method
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Fig. 5 Overall comparison of the task scheduling methods in terms of
quality of the results and execution time
method. MHTS can take much longer to execute than HTS, but as
shown in Table 5, outperforms HTS in terms of quality of the
results. Another observation from Table 6 is that ILP-based
approach runs slightly slower than the other approaches on
average, as we also showed in the complexity analysis section.
This is the case with the telecom and auto benchmark.

Fig. 5 shows the overall comparison of the mentioned methods in
terms of quality of the results and execution time. The results are the
average values of timing yield and execution time over all
benchmarks and timing constraint scenarios. As illustrated in this
figure and compared with our ILP-based method, HTS is 795 times
faster, but provides solutions with 10% lower timing yield on
average. SA-based and GA-based methods provide near-optimal
solutions within 1–2% of the optimal solution, and are 7.8 and 6.8
times faster on average. Finally, MHTS yields in solutions within
2.5% of the optimal solutions, and is 25.3 times faster.
7 Conclusion

This paper provides a comparative study of the current
variation-aware static task scheduling algorithms for embedded
MPSoCs. We used our developed variability modelling framework
to extract MPSoC frequency distributions in the presence of both
WID and D2D process variations. We compared the task
scheduling algorithms in terms of both quality of the solutions and
computational complexity. We showed that the ILP-based task
scheduling technique, while guaranteeing the optimality of the
solution, can be costly for large application task graphs. On the
other hand, one-pass heuristic method is 795 times faster than
ILP-based method on average, but is ineffective to find reasonable
solutions in the case of large task graphs. Finally, metaheuristic
approaches can produce near-optimal schedules within 1–2% of
the optimal solutions on average, with up to 7.8 times faster
execution time on average compared with ILP-based approach.
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