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Abstract

Variability in various system parameters presents itself as design-time uncertainty in the performance of modern pro-
cessors. To ensure correct operation, conventional processors are designed pessimistically for the ”worst case,” leading
to large safety margins. By relaxing the strict requirement of error-free operation, timing speculative processors replace
these safety margins with additional circuitry to tolerate possible timing errors. In this paper, we review the major error
detection and recovery schemes used for timing speculation and discuss the main challenges in the design and analysis
of these techniques.

1. Introduction

As the semiconductor technology scales into ever deeper
regimes, the amount of variability in manufacturing pro-
cess parameters, such as transistor threshold voltage and
critical dimensions is increased [16]. Also concomitant to
the aggressive scaling of transistors is the increased sensi-
tivity of their speed to variations in environmental condi-
tions such as the supply voltage and temperature. Conse-
quently, system performance varies significantly both across
the manufactured parts and over time.

The sources of variability can be categorized accord-
ing to their spatial reach as well as their temporal rate
of change. Spatial reach determines whether a source af-
fects all transistors of a chip (global) or only a few transis-
tors in close proximity (local). For instance, process varia-
tion has global or die-to-die (D2D) and local or within-die
(WID) components [2]. A recent experimental Intel pro-
cessor shows around 50% performance variation among its
80 cores when operated at 0.8V due to WID process vari-
ation alone [10]. Both D2D and WID components of pro-
cess variation, however, are in the same category based on
their temporal rate of change. Variations caused by these
sources are called static variations since their magnitude
remains constant during the lifetime of the chip. Dynamic
sources of variation, on the other hand, cause variations
that change during the operation of the chip. They in-
clude slow variations such as temperature hotspots that
are spread over thousands of clock cycles as well as fast
variations such as supply voltage fluctuations that occur
over the course of several clock cycles. Ambient tempera-
ture variations can also be expected to be dynamic. Inter-
national Technology Roadmap for Semiconductors (ITRS)
projects supply power variation to be 10% while the oper-
ating temperature can vary from 30 to 175°C resulting in
several tens of percent performance change [16]. Finally,
it is useful to consider input data (running code and its

input in case of processors) as variation sources. A recent
study concluded that input data to a single program can
cause variations comparable in magnitude to those caused
by other variability sources such as process variation [1].

Circuit designers have addressed the growing uncer-
tainty in the timing characteristics of variability-affected
systems by continuous widening of timing guardbands.
Each source of variability is accounted for by adding more
guardbands. While more sophisticated design-time anal-
ysis methods such as Statistical Static Timing Analysis
(SSTA) have tried to reduce design pessimism, guardbands
continue to increase steadily with each technology gener-
ation [16], leading to loss of performance and increased
costs due to over-design.

1.1. Reducing Timing Guardbands: Predict and Prevent

Traditional approaches specifically aimed at reducing
timing guardbands monitor the state of the system and re-
duce timing guardbands when possible. For instance con-
ventional Dynamic Voltage and Frequency Scaling (DVFS)
adjusts the system’s operating point based on precharac-
terized safe values stored in a look-up table [28][27]. Ca-
nary circuits are a more sophisticated class of system state
monitors that try to monitor the critical path’s available
slack directly [13][6][19][11]. One such technique, called
Active Management of Timing Guardband [13] , is imple-
mented in IBM POWER7 server where Critical Path Mon-
itors (CPM) measure the available timing margin under
thermal fluctuations, voltage skewing, workload-induced
voltage and temperature variations, etc., and a control
unit adjusts processor voltage and frequency to achieve
error-free operation while reducing the guardbands. While
these techniques provide a low-cost solution for reducing
timing guardbands, they are unable to account for local
and fast changing dynamic variations including delay vari-
ations caused by input data. Therefore, guardbands asso-
ciated with these variations cannot be removed and the



associated costs remain.

1.2. Eliminating Timing Guardbands: Detect and Recover

Recent research efforts have increasingly focused on
a class of processors called timing speculative processors.
Traditional sequential circuit designs work under the strict
condition that voltage and frequency of the circuit should
be set such that no timing violations can occur. Tim-
ing speculation, on the other hand, allows timing errors
by removing timing margins and relies on circuit- and
microarchitecture-level techniques to detect and recover
from these errors. In this paper, we focus on these sys-
tems and present a review of the major techniques pub-
lished in recent years. While both detection and recovery
of timing errors can be performed at various levels of the
hardware/software stack, in this paper we focus on circuit
level detection and microarchitecture level recovery tech-
niques.

Overview. The remainder of the paper is organized
in three sections. We start in section 2 with a review of
new circuits designed for detecting timing errors. These
circuits which are referred to as Error Detection Sequen-
tial (EDS) circuits are designed to add timing error de-
tection capabilities to the conventional sequential circuits
(i.e. latches and flip-flops). Next, in section 3, we review
a number of microarchitectural methods that are designed
to restore the correct system state after a timing error is
detected by the EDS circuits. Finally, section 4 presents a
brief overview of a timing model designed for performance
modeling of timing speculative systems.

2. Error Detection

In this section, we present a review of the major EDS
circuits. These circuits are designed to add timing error
detection capabilities to the conventional sequential cir-
cuits (i.e. latches and flip-flops) of digital systems. If the
input data signal arrives late (i.e. after the clock edge) at
their input pins, EDS circuits raise an error signal which is
used by the error recovery logic to restore the correct sys-
tem state. Error recovery schemes are reviewed in section
3. The major challenges in the design of EDS circuits are
energy overhead and possible occurrence of metastability.
An ideal EDS circuit would detect a timing error if and
only if the input signal arrives after the clock edge while
(i) enabling fast, low-overhead error recovery, (ii) incurring
little energy overhead, and (iii) minimizing the probability
of metastability. We introduce these issues in describing
the first EDS circuit proposal, known as Razor [8] and ex-
plain how subsequent methods have tried to address them.

In general, EDS circuits take one of the following ap-
proaches in detecting timing errors:

Double Sampling: In addition to the conventional flip-
flop that samples the input data at the edge of the
clock, these EDS circuits sample the data a second
time after the clock edge. The second sample is

(a)
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Figure 1: Conceptual representation and timing diagrams of the Ra-
zor flip-flop [8].

guaranteed to be correct using design-time worst-
case timing analysis. Consequently, the two samples
are compared and a timing error is declared in case
of a mismatch. EDS circuits described in sections 2.1
and 2.2 are of this type.

Transition Detection: Instead of a second delayed sam-
pling, these EDS circuits dynamically monitor the
input data or some internal node after the clock
edge. A transition during this period is indicative
of a late arriving input signal and a timing error is
declared if such a transition is detected. EDS cir-
cuits described in sections 2.4, 2.3, and 2.5 take this
approach.

2.1. Razor

Fig. 1a shows a block diagram of a Razor flip-flop
(henceforth referred to as RFF). In addition to the stan-
dard edge triggered D-flip-flop (DFF), the RFF includes
a shadow latch. Here the main flip-flop samples the input
data at the rising edge of the clock while the shadow latch
is transparent throughout the high clock phase. Therefore,
a signal arriving at the input pin of RFF after the rising
edge of the clock (cycle 2 in Fig. 1b) causes different val-
ues to be captured by the main flip-flop and the shadow
latch. This raises the error signal which then initiates the
recovery mechanism. Note that the shadow latch always
captures the correct value as long as the input data ar-
rives no later than the falling clock edge. For this reason,
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the high clock phase is referred to as the detection, sam-
pling or speculation window of the RFF. The length of
the detection window determines the maximum allowable
delay of the incoming timing paths, and consequently the
maximum amount of increase in frequency or decrease in
supply voltage that the RFF can tolerate. The maximum
path delay constraint is therefore defined as [3]

Tmax ≤ Tcycle + Tw − Tsetup (1)

where Tmax is the maximum path delay, Tcycle is the
clock cycle time, Tw is the detection window length, and
Tsetup is the setup time of the shadow latch. Eq. 1 illus-
trates how a Razor flip-flop relaxes the maximum path de-
lay constraint of a conventional DFF by the amount equal
to the length of the detection window.

But, what if the input signal toggles during the high
clock phase not due to a slow path from last cycle but be-
cause of a fast path in the current cycle? The RFF has no
way of differentiating between these two cases and would
indicate a false error if the former occurs. This is illus-
trated in Fig. 1b where the input signal toggles too soon
during the high clock phase of cycle 4. In fact, the length
of the detection window lies at the heart of a fundamental
trade-off in the design of EDS circuits. While a wide detec-
tion window is desirable to achieve maximum throughput
and energy improvement, its length is limited by the min-
imum delay of fast paths. In order to eliminate the possi-
bility of fast paths incurring false errors, Razor requires all
paths to have best-case delays larger than the length of the
detection window plus the hold time of the shadow latch.
The minimum path delay constraint is therefore written
as [3]

Tmin ≥ Tw + Thold (2)

where Tmin is the minimum path delay, Tw is the de-
tection window length, and Thold is the hold time of the
shadow latch. This constraint is met by inserting de-
lay buffers in fast paths to increase their propagation de-
lay. This incurs a power overhead to the design, working
against the original goal of reducing it. Hence, the length
of the detection window should be configured to maximize
power savings through voltage reduction while minimizing
the power overhead from the insertion of delay buffers.

Eq. 2 illustrates two important facts about a Razor
flip-flop. First, RFF restricts the minimum path delay
constraint of a conventional DFF by the amount equal to
the length of the detection window. This is in contrast
to the maximum path delay constraint of RFF which is
relaxed by the same amount (See Eq. 1). The maximum
and minimum path delay constraints of an RFF are, there-
fore, linked together by the detection window. Energy ef-
ficiency improvements which are achieved by relaxing the
maximum path delay constraint come at the cost of addi-
tional restriction on the minimum path delay constraint,
which is met by adding delay buffers leading to diminish-
ing energy efficiency gains. Second, the minimum path

delay constraint only limits the maximum length of the
high clock phase and imposes no restrictions on the clock
frequency. Hence, the operating frequency can be chosen
arbitrarily while the duty cycle of the clock is tuned for
the minimum path delay constraint to be met.

Another important issue in the design of EDS circuits
arises from the fact that by allowing the input signal to ar-
rive after the rising edge of the clock, setup and hold time
constraints of the main flip-flop are not respected. There-
fore, if the input signal is only slightly late and toggles
”too close” to the rising clock edge, there is a possibility
that the main flip-flop becomes metastable. Razor handles
this issue by taking two measures. First, a local metasta-
bility detector is placed at the output of the main flip-flop
and the RFF raises its error signal in the case it becomes
metastable. This ensures that metastability-causing errors
do not go undetected while, again, incurring additional en-
ergy overhead. Second, Razor requires at least two succes-
sive non-critical pipeline stages immediately before stor-
age to eliminate the possibility of metastable signals being
committed to memory. Margining two pipeline stages runs
contrary to the design motivation of Razor and can limit
its ability to achieve optimal energy and/or throughput
improvements.

For a timing error to go undetected, the resolution time
(i.e. the time it takes for the RFF to resolve its state)
must satisfy two timing constraints. First, the data-path
signal must become stable early enough so that a low-logic
is sampled as the error signal. Therefore, the resolution
time must satisfy

Tr < Tcycle − Terror−path − Tsetup (3)

Second, the additional delay incurred on the data-path
by the resolution time must cause the subsequent RFF to
fail its maximum path delay timing constraint. In other
words

Tr + Tdatapath > Tcycle + Tw − Tsetup (4)

where Tdatapath is the propagation delay of the data-
path. Hence, for these conditions to be met, the data-path
propagation delay must approximately fall in the following
range

Tmin + Terror−path − Thold < Tdatapath < Tmax (5)

Since propagation delay of the error path (Terror−path)
is typically a small fraction of the cycle time, a large num-
ber of data-paths would satisfy these conditions and result
in undetected timing errors. As a result, it is imperative
for an RFF to include a metastability detector in its data-
path to prevent such an event.

2.2. Double Sampling with Time Borrowing(DSTB)

The second EDS circuit discussed is called Double Sam-
pling with Time Borrowing (DSTB). The design of DSTB
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(a) DSTB (b) RFF

Figure 2: Conceptual representation DSTB and Razor flip-flop [3].

(a) (b)

Figure 3: Conceptual representation and timing diagrams of the
TDTB EDS Circuit [3].

is very similar to that of the RFF. Fig. 2a shows a concep-
tual view of a DSTB next to that of an RFF in Fig. 2b. In
DSTB, relative to RFF, the main flip-flop and the shadow
latch have swapped places. Recall that since the setup and
hold time constraints of the main flip-flop is not respected
in RFF, there is always the possibility of it becoming
metastable. The shadow latch, in contrast, would never be
metastable as long as the maximum path delay constraint
of the RFF (Eq. 1) is satisfied. In RFF, the problematic
DFF feeds both the data path and the error path. Hence,
signals on both paths can become metastable.

As discussed in section 2.1, Razor requires a metasta-
bility detector to prevent undetected errors as well as two
successive non-critical pipeline stages immediately before
the memory to ensure that metastable signals do not cor-
rupt the state of the processor, requirements that limit
the benefits of timing speculation offered by Razor. In
contrast, in DSTB, the data-path is driven by the shadow
latch and the metastability issue is limited to the error
path. An analysis of the metastability in DSTB (See [3]
for more details) reveals that limiting metastability to er-
ror path causes the Mean Time Between Failures (MTBF)
to be orders of magnitude larger for DSTB than for RFF,
to the point that the metastability detector can be safely
omitted from the EDS circuit, reducing the energy over-
head of timing speculation.

2.3. Transition Detector with Time Borrowing (TDTB)

The next EDS circuit is called Transition Detection
with Time Borrowing (TDTB) [3]. Fig. 3a and 3b show
the circuit level implementation and sample timing dia-
grams of the TDTB EDS circuit. In contrast to previous

EDS circuits, TDTB implements a dynamic error detec-
tion scheme where timing errors are identified not by de-
layed resampling, but by dynamic monitoring of the input
data using a transition detector. The XOR gate contin-
uously compares the input data with its delayed version
and produces a pulse when they are not equal, effectively
detecting input data transitions. During the low phase of
the clock, the error signal is disconnected from the tran-
sition detector and is driven by the top transistor to a
logic low. As the data-path latch is opaque during this pe-
riod, the EDS circuit behaves like a conventional flip-flop.
However, if a late-arriving signal causes the input data to
transition during the high clock phase, the error signal
transitions to logic high and remains in this state until the
falling clock edge brings it to a logic low again. Similar to
DSTB EDS circuit, while time borrowing is potentially en-
abled by employing a level-sensitive latch in the data-path,
it is suppressed by the activated error signal, effectively
enforcing conventional edge-triggered flip-flop operation.

The above analysis shows that a TDTB design imple-
ments the same functionality as double sampling EDS cir-
cuits, including limiting the metastability issue to the error
path. At the same time, TDTB improves the performance
and energy efficiency of DSTB EDS circuits in the fol-
lowing ways. First, both size and clock energy of TDTB
is significantly smaller than that of DSTB, and even the
conventional master-slave flip-flop. Granted, conventional
master-slave flip-flops can always be replaced with pulse-
latches at the expense of additional design complexity to
achieve lower clock energy. Second, both the propagation
delay (CLK-to-Q) and setup time (defined as the minimum
D-to-CLK delay prior to the rising clock edge such that an
error signal is not generated) are improved in a TDTB EDS
circuit, resulting in potential performance improvements.
These benefits, however, come at the price of increased de-
sign complexity as well as sensitivity to within-die process
variation. Moreover, the issues of error path metastability
and minimum path delay constraint remain in TDTB.

2.4. RazorII

The next version of Razor flip-flop is called RazorII [9].
Fig. 4a and 4b show the block diagram and sample tim-
ing diagrams of the RazorII EDS circuit. Similar to the
TDTB design, RazorII uses a single latch and employs a
transition detector to monitor dynamic behavior of the in-
put signal and detect timing errors. Unlike the TDTB
transition detector that directly monitors the input data
pin, the transition detector in RazorII is connected to the
internal latch node and essentially detects transitions on
the latch output rather than the latch input. This design
decision trades off some of EDS circuit timing error cover-
age to achieve full soft error coverage. TDTB EDS circuit
has a detection window equal to the high phase of clock for
both timing and soft errors. RazorII, on the other hand,
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Figure 4: Conceptual representation and timing diagrams of the Ra-
zorII flip-flop [9].

can detect soft errors during the entire clock cycle 1, while
its detection window for timing errors is reduced. The
reason for this will be clear after an analysis of RazorII’s
operation which follows.

During the low phase of the clock, the latch is opaque
and no transitions happen at the internal latch node de-
noted by N in Fig. 4a. The EDS circuit, therefore, oper-
ates similar to a conventional flip-flop during this time. A
transition caused by a late-arriving signal during the high
clock phase, on the other hand, toggles N as the latch is
transparent at this time. The transition is detected by the
transition detector and flagged as a timing error. However,
even a legitimate transition at the EDS circuit input be-
fore the rising edge of the clock takes the time equal to the
CLK-to-Q delay of the latch to appear at its output after
the rising edge of the clock. Therefore, the transition de-
tector must be disabled at the beginning of the clock cycle
for a time greater than this delay to prevent flagging such
transitions as timing errors. This is accomplished by the
detection clock generator block that produces a negative
pulse which deactivates the transition detector. In order
to ensure correct operation, the length of this pulse must
be guaranteed to be greater than the CLK-to-Q delay of
the latch across all PVT corners. Hence, it is required that
the minimum width of the negative pulse is greater than
the maximum CLK-to-Q delay of the latch. While post-
manufacturing tuning of the detection clock pulse width
can be used to account for process variation, the width of
the pulse should still be suitably margined. This causes
the detection pulse to be longer than the CLK-to-Q delay

1Analysis of soft error tolerance is beyond the scope of this paper.
See [9] for details.

Figure 5: Circuit level implementation of a conventional flip-flop and
added Razor-Lite EDS circuit [18].

of the latch. As a result, the transition detector remains
disabled for an additional period equal to the difference be-
tween the pulse width and CLK-to-Q delay. During this
time, transitions on the internal latch node are not de-
tected and no timing errors are declared, thereby reducing
the detection window width of the EDS circuit. If the ad-
joining path in the next pipeline stage has ample timing
slack, correct operation is maintained through time bor-
rowing, resulting in even more performance improvements.
However, there is always the possibility of system failure
if multiple stage time borrowing is accumulated beyond
the ability of RazorII flip-flops error tolerance. Complex
design-time timing analysis of time-borrowing is, therefore,
required to guarantee correct system operation.

Similar to DSTB and TDTB EDS circuits, RazorII suc-
cessfully limits the metastability issue to the error path
while the minimum path delay constraint problem remains.
It accomplishes improved energy efficiency compared to
double sampling EDS circuits at the expense of additional
design complexity and sensitivity to process variation. Com-
pared to TDTB, soft error coverage is extended to the
entire clock cycle, but timing error detection window is
shortened and sensitivity to process variation is increased.

2.5. Razor-Lite

All EDS circuits discussed so far implement error de-
tection capabilities at the expense of, among other things,
significantly increasing the energy consumption of conven-
tional sequential circuits. Razor-Lite [18] is a more re-
cent EDS circuit designed to mitigate this problem. Fig. 5
shows circuit level implementation of a conventional flip-
flop along with the error detection circuit added by Razor-
Lite. The detection circuit uses two internal nodes of the
flip-flop’s input buffer, called virtual rails and denoted by
VVDD and VVSS in Fig. 5, to detect timing errors. To
understand how this is accomplished, it is useful to analyze
how these two nodes (VVDD and VVSS) behave during
the absence and presence of timing errors.

During the low phase of the clock, M1 and M4 are
both on and VVSS and VVDD are driven (by ground and
VDD) to logic-low and logic-high, respectively. DN is con-
nected to one of the virtual rails based on the value of
the input data D by turning on either M2 or M3. During
this time, transitions on D change the value of DN but
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VVDD and VVSS remain constant. At the rising edge of
the clock, both M1 and M4 are turned off and the virtual
rails start floating. Note, however, that either VVDD or
VVSS remains connected to DN through the M2 or M3.
If no timing errors occur and D does not transition during
the high clock phase, VVDD and VVSS remain high and
low, respectively. However, a transition on D caused by a
late-arriving signal changes the states of M2 and M3, dis-
connecting the previously connected virtual rail from and
connecting the other one to DN. Since the newly connected
virtual rails has the opposite state as DN, the feedback in-
verter of the master latch pull it toward the value of DN. In
other words, an input data transition during the high clock
phase causes either a low-to-high transition on VVSS or a
high-to-low transition on VVDD. Such transitions do not
occur in the absence of timing errors, and can, therefore,
be used to detect timing errors.

The detection circuit consist of two high-skewed in-
verters and a low-skewed OR gate. Skewed logic is used
to take advantage of the unidirectionality of the transi-
tions to speed up the error path. An important property
of these error-indicating transitions in Razor-Lite is that
they never occur during error-free operation, neither in
the low nor in the high phase of the clock. This is in
contrast to the error-indicating transitions monitored by
previous EDS circuits with transition detection that indi-
cated timing errors only during the detection window. As
a result, unlike previous transition detectors that needed
to employ the clock signal, Razor-Lite EDS circuit imple-
ments a static transition detector, incurring no additional
clock load. Extra data-path loading is also avoided. As
a bonus, setup and hold times of the circuit are slightly
reduced. Energy overhead is consequently limited to less
than 3% as only 8 transistors are used to implement error
detection. As a point of comparison, the most light-weight
previous EDS circuit, TDTB, uses 15 transistors and in-
curs around 10% of energy overhead for error detection
while also incurring extra clock and data-path loadings
that add larger overheads to the performance (CLK-to-Q)
of the EDS circuit.

In addition to the energy-efficiency of the EDS cir-
cuit, Razor-Lite is inherently more resilient to metasta-
bility. While the possibility of metastability in data-path
is present similar to Razor, the use of skewed logic for er-
ror detection ensures with a high level of confidence that
long-term metastable events are identified as timing errors.
Short-term metastable events are either detected as timing
errors (if they resolve to the correct state) or add a small
delay to the CLK-to-Q delay of the EDS circuit. It is rea-
sonable to assume that this small additional propagation
delay can be absorbed by the next pipeline stage.

Finally, Razor-Lite mitigates the problem of minimum
path delay constraints by implementing a duty cycle con-
troller to dynamically adjust the duty cycle of the clock.
An algorithm for initial and run-time calibration of duty
cycle is proposed that minimizes false error detections due
to fast paths. Initial calibration is performed at half-

frequency and by reducing the duty cycle from 50% until
no fast path errors are detected. At run-time, duty cycle
is tuned during error recovery where again the processor
works at half-frequency and replays the errant instruction.
If another timing error is detected during this time, both
errors are assumed to be the result of a fast path violation
and the duty cycle is reduced to suppress them. Duty cy-
cle is increased when too many slow path violations (i.e.
true timing errors) are detected. This strategy mitigates
the energy overhead incurred by the delay buffers added
to fast paths to satisfy minimum path delay constraints of
EDS circuits and further improves the energy efficiency of
Razor-Lite.

3. Error Recovery

When a timing error is detected by EDS circuits, they
raise an error signal that initiates error recovery. The er-
ror recovery logic is responsible for restoring the correct
system state by (i) preventing the propagation of the er-
ror and (ii) maintaining the correct order of instruction
executions. Recovery penalty is defined as the average ad-
ditional time spent for an errant instruction to correctly
finish execution compared with the error-free case. A
large recovery penalty significantly limits the potential en-
ergy/performance improvements that timing speculation
can achieve. Various error recovery mechanisms can be
characterized, among other things, by how they choose to
balance the trade off between the recovery penalty and
the energy overheads of EDS circuits and the recovery
logic. Other desirable properties include manageable de-
sign complexity including architecture independence, un-
intrusiveness, and automatic design and analysis using CAD
tools.

The error recovery techniques discussed in this section
take one of the following approaches to accomplish these
tasks.

Local Error Correction: This recovery technique relies
on the ability of the error detection circuit to correct
its own state. Therefore, this approach cannot be re-
alized using the EDS circuits discussed in section 2
except first Razor EDS circuit reviewed in section 2.1
which implements local error correction. The tech-
niques discussed in sections 3.1 and 3.2 are of this
type.

Instruction Replay: It is not strictly necessary to cor-
rect the timing error as long as it is prevented from
corrupting the architectural state of the processor.
A number of recovery techniques take advantage of
this observation to enable the use of simpler EDS
circuits that have smaller energy overheads. The er-
rant instruction is simply replayed until it completes
without experiencing errors. This, of course, results
in a larger recovery penalty. These methods are dis-
cussed in section 3.3.
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(a)

(b)

Figure 6: Microarchitecture design of clock gating and pipeline tim-
ing during error recovery [12].

Error Masking: Data corruption can be avoided by us-
ing EDS circuits that have a latch in their data-path,
by taking advantage of their ability to mask tim-
ing errors using time borrowing. This approach in-
curs some additional design complexity but achieves
a smaller recovery penalty. Techniques discussed in
sections 3.4 and 3.5 take this approach.

3.1. Clock Gating

Fig. 6a and 6b show the microarchitecture design of
clock gating and a timing diagram of the pipeline dur-
ing the recovery of a timing error in the EX stage. This
technique relies on the capability of the EDS circuits to
perform local or in situ error correction. The Razor EDS
circuit reviewed in section 2.1 (RFF) implements this func-
tionality. Error signals of all RFFs are simply OR-ed to-
gether and produce a recover signal which is used as the
global clock gating control signal. When a timing error is
detected, the entire pipeline is stalled for one cycle during
which all RFFs reload their main flip-flops with the value
in their shadow latches. Normal execution continues with
the next clock cycle. The recovery penalty is only one
clock cycle, even when multiple errors occur during one
clock cycle.

Other than reliance on an EDS circuit design with lo-
cal error correction capability, this scheme meets all de-
sign goals of error recovery. Recovery penalty is only one
clock cycle and the recovery logic incurs small area and
energy overheads. Moreover, it can be implemented inde-
pendent of the processor architecture using existing CAD
tools. The main drawback arises from the strict require-
ment on the error path delay. For correct operation, the
timing error must be detected, translated into the recover
signal, and routed to all flip-flops, in less than a clock
cycle. This is impractical in high-performance processors

(a)

(b)

Figure 7: Microarchitecture design of counterflow pipelining and
pipeline timing during error recovery [8], [12].

where the chip-wide wire delays alone are more than one
clock cycle.

3.2. Counterflow Pipelining

Fig. 7a and 7b show the microarchitecture design of
counterflow pipelining and a timing diagram of the pipeline
during the recovery of a timing error in the EX stage. Sim-
ilar to clock gating, this technique relies on EDS circuits
with local error correction capability. Using the counter-
flow pipelining concept [26] of instruction results (error
signals in this case) moving backwards in the pipeline, this
technique eliminates the problematic timing constraint of
the error path in clock gating at the expense of increasing
the recovery penalty.

The detection of a timing error initiates two actions.
First, a bubble is sent to downstream pipeline stages nul-
lifying the computation in the stage following the errant
stage. This prevents the propagation of the error. Second,
a flush train carrying the stage identifier of the failing stage
is launched backwards. The flush train inserts a bubble as
it passes through upstream stages nullifying the succeed-
ing instructions. The errant instruction is corrected by
the EDS circuits in the following clock cycle and continues
execution. Once the flush train reaches the start of the
pipeline, execution at the instruction following the errant
one. The recovery penalty consists of the time for the flush
train to reach the start of the pipeline and the time for the
re-executed instructions to return to their corresponding
stages before the timing error. Counterflow pipelining,
therefore, incurs a recovery penalty of 2N cycles where N
is the maximum (in case of multiple errors) depth of the
errant stages in the pipeline. This value ranges from 2 to
2S with an average value of S+1 (assuming uniform error
probabilities across the stages), where S is the number of
pipeline stages.
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Counterflow pipelining remains reliant on the error cor-
rection ability of the EDS circuits while it successfully
eliminates the error path delay constraint of the clock gat-
ing scheme at the expense of increased recovery penalty,
area and energy overheads, and design complexity.

3.3. Instruction Replay

The design of instruction replay error recovery tech-
niques is motivated by the observation that energy and/or
performance gains from aggressive voltage scaling or over-
clocking is mitigated by the exponential increase in the
rate at which timing errors occur. Therefore, the pro-
cessor should be operated near the first point of failure
where error rates are low. At this point, the energy of the
EDS circuits and recovery logic rather than the recovery
penalty is the main contributor to the energy/performance
overhead of timing speculation. As a result, the recovery
mechanism is designed to trade off the recovery penalty for
the energy overhead of EDS circuits and recovery logic.
This is accomplished in two steps. First, no error cor-
rection mechanism is implemented, neither by the EDS
circuit nor the microarchitecture. Error signals are simply
passed along the pipeline and serve in the write-back stage
as write enable controls for the register file and memory to
prevent the corruption of the architectural state. Second,
the recovery mechanism is very similar to the logic already
present in most processors for branch miss-prediction and
can share resources with it to decrease the energy over-
head.

In order to ensure that replaying instructions resolves
the timing errors, one of the following approaches, or a
combination of them is taken. For a timing error to oc-
cur on a path, the clock cycle should be smaller than its
propagation delay and transitions at the start of the clock
cycle should sensitize the path (i.e. toggle all its nets).
The two approaches correspond to these two requirements
and seek to reduce or eliminate their probability.

Slow Execution: In this approach, clock frequency is sub-
stantially reduced (typically halved) such that the
clock cycle is longer than worst case delay of all the
paths, thereby eliminating the possibility of timing
errors. Minimum path delay constraints are guaran-
teed to be satisfied by maintaining the high phase de-
lay of the clock. In addition to doubling the penalty
for flushing the pipeline from S cycles to 2S cycles
where S is the number of stages in the pipeline, this
approach incurs an instruction replay penalty of 2S
cycles.

Path Sensitization Reduction: This approach reduces,
and ultimately eliminates, the probability of the fail-
ing paths being sensitized. It is accomplished by N
back-to-back executions of the errant instruction. In
a pipeline with S stages, the probability of failing
paths being sensitized by the Nth execution reduces
as N is increased and reaches zero for N = S + 1.

The first N − 1 executions set register input values
without changing the architectural state and the last
execution is the only valid one. Each increment of
N sets more register input values and reduces path
sensitization probabilities, eventually preventing all
signal transitions at N = S+1. While the worst-case
total recovery penalty of this approach which equals
3S cycles (2S cycles for instruction replay plus S
cycles for flushing the pipeline) is smaller than the
penalty of halving the frequency which equals 4S cy-
cles (2S cycles for instruction replay plus 2S cycles
for flushing the pipeline), careful selection of N can
further reduce the total penalty to 2S+N−1. If the
selected N is too small, however, the effective recov-
ery penalty would be larger than the first approach
as the entire recovery mechanism must be repeated
to ensure correct execution.

A RazorII implementation [9] uses a combination of
the above techniques to recover from a timing error as fol-
lows. First, the recovery mechanism is initiated by the
error signals. Next, the entire pipeline is flushed. Then,
the errant instruction is replayed for a maximum of Nmax

times, called the replay limit. If the error persists through
all the replays, a final replay is issued at half frequency to
guarantee correct execution. Experimental results indicate
that around 60% of the errant instructions do not require
frequency reduction when Nmax = 2. With Nmax = 2,
errant instructions are replayed once at the current fre-
quency and, in case of a repeated error, once at the half
frequency.

An Intel research processor [4] implements two slightly
different policies. The first one, called instruction replay at
half frequency, essentially implements the above technique
for Nmax = 1. This policy has also been implemented in an
ARM processor using RazorII EDS circuits [5]. The sec-
ond policy proposed in [4] does not reduce the frequency
and relies on the second approach only. First the errant
instruction is replayed N times with only the Nth exe-
cution allowed to change the architectural state. If the
error persists even in the Nth execution, the instruction is
replayed with N = S + 1 to ensure correct execution.

Selecting the optimal policy requires a comprehensive
analysis of the system’s error behavior while the effect of
the typical workload is taken into account. This highlights
the need for fast simulation/emulation platforms that en-
able extensive design space exploration.

3.4. Bubble Razor

With the exception of clock gating which is architecture-
independent, all the recovery mechanisms discussed so far
must be implemented during the design of the microar-
chitecture at the register transfer level. This increased
design complexity substantially limits their scalability to
large high-performance processors. Bubble Razor [14] pro-
poses a distributed and architecture-independent error re-
covery mechanism to provide improved scalability. The
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basic idea is to convert a conventional flip-flop based de-
sign into a two-phase latch based design. The flip-flops are
broken into their constituent master and slave latches and
the master latch is moved to backwards in the data-path
to achieve a new balanced pipeline with twice the number
of stages as the original pipeline. Any of the EDS circuits
discussed in section 2 with a latch in its data-path can be
used. A latch clustering scheme is used to mitigate the
overhead incurred by the additional latches.

A key property of the new two-phase latch based design
is that consecutive latches operate out of phase. In other
words, when a latch is transparent, all its neighbors are
opaque and vice versa. This property is extremely ben-
eficial to a timing speculative system by producing two
main consequences. First, it restores the minimum path
delay constraints of the design to their conventional forms
by breaking their link to the detection window length and
minimum path delay constraints. Recall that the mini-
mum path delay constraints of EDS circuits is substan-
tially more restricted than conventional flip-flops due to
the requirement of differentiating between slow paths from
the last clock cycle and fast paths from the current clock
cycle. This problem does not exist in a two-phase latch
based pipeline. An input signal arriving during the trans-
parency of period of a latch is guaranteed to be a slow path
from the last clock cycle because the neighboring latches
are closed during this time and do not launch new signals.
Recall that the minimum path delay constraints of EDS
circuits substantially limit the energy and performance
benefits of timing speculation. Bubble Razor eliminates
this limitation.

Second, since latches operate out of phase, they can be
stalled one after the other without losing data. In flip-flop
based pipelines, flip-flops must be stalled simultaneously
to avoid the loss of data as launching and capturing op-
erations are performed at the same time. A two-phase
latch based pipeline, on the other hand, interleaves the
launch and capture operations. Therefore, when a latch
stalls, data is not launched towards it for a period of one
clock phase. This time difference can be used to communi-
cate the stall signal to all neighbors, causing them to stall
one clock phase later as necessary. Since neighbors are
by definition less than one clock phase apart (otherwise
normal data communication would have been impossible),
stall signals are guaranteed to reach their destinations in
time. Therefore, it is possible and practical to implement
a scalable clock gating scheme to achieve a one-cycle error
recovery penalty.

Fig. 8 illustrates the error recovery mechanism of Bub-
ble Razor. Once a timing error is detected by a latch, it
communicates the error to the next stage, causing it to
stall by skipping its next transparent phase. This pro-
vides additional time for the late-arriving signal to reach
the next latch. This mechanism essentially implements
a controlled time borrowing scheme where the amount of
borrowed time is always equal to one clock cycle. While
a latch based design such as the one used by Bubble Ra-

Figure 8: Two-phase latch based pipeline used for error recovery in
Bubble Razor [14].

zor can mask timing errors by continuous time borrowing
without paying any recovery penalty, a failure is possible if
the time borrowing compounds through multiple consec-
utive failing stages. The discrete time borrowing scheme
implemented by Bubble Razor avoids the complex analysis
required for verification against this effect at the expense
of paying a one cycle recovery penalty for all timing errors
including the ones that would not induce failures. Going
back to the recovery mechanism, when a stage receives an
error signal, it starts the bubbling process by sending bub-
bles to all its neighbors. A latch receiving bubbles from
one or more of its neighbors stalls and sends bubbles to
the neighbors it did not receive bubbles from.

This recovery mechanism (with a small modification
not discussed here) guarantees error recovery and forward
progress even in the face of multiple timing errors by pay-
ing a constant one-cycle recovery penalty. This comes at
the expense of an increased number of latches compared
to a conventional latch-based design that is required with
instruction replay recovery scheme. The increased energy
overhead incurred by these extra latches is compensated
by the low-overhead recovery mechanism and the elimina-
tion of large energy overheads as a result of more relaxed
minimum path delay constraints.

3.5. TIMBER

TIMBER [7] introduced a pair of new EDS circuits
(TIMBER flip-flop and TIMBER latch) based on the con-
cept of double sampling. Unlike other EDS circuits that
are designed to be accompanied by some error correction
scheme to recover from errors, TIMBER EDS circuits en-
able a different recovery mechanism based on time borrow-
ing and error relaying. Design of TIMBER is motivated
by two observations. First, as frequency is increased (or
voltage is decreased) past the point of first failure, the rate
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Figure 9: Conceptual representation TIMBER operation [7].

at which timing errors occur increases exponentially, and
benefits of aggressive overclocking (or voltage scaling) are
exceeded by the large cost of error recovery. As a result,
a large fraction of wide detection windows remain unused
by the error-rate-aware DVFS operation of the processor.
Accordingly, TIMBER is designed with a narrow detection
window. Second, while a processor may have a large num-
ber of critical paths, only a small fraction them are con-
nected together by flip-flops. In other words, most critical
paths are preceded and followed by non-critical paths. The
narrow detection window of TIMBER allows it to mask
timing errors in a pipeline stage by borrowing time from
the next stage. Indeed, this comes at the expense of large
recovery costs for multiple-stage timing errors (i.e. errors
spanning multiple successive pipeline stages).

Fig. 9 illustrates design concept of TIMBER. Checking
period is the time after the rising clock edge during which
possible late signals may arrive at the EDS circuits. This
period is divided into a time borrowing and two error de-
tection intervals.The length of the time borrowing interval
determines the amount of overclocking allowed such that
a single-stage timing error is guaranteed to arrive during
the time borrowing period. This timing error is masked by
borrowing the time borrowing interval of the next pipeline
stage. An error signal is relayed to the next stage so that
incoming signal is sampled later, but no errors are flagged
to the central control unit. If a timing error occurs in the
next stage as well (i.e. a two-stage error), the signal to
the endpoint of the second path is similarly guaranteed
to arrive in the first error detection window. This error
is similarly masked by borrowing the first error detection
interval of the next stage. The number of error detection
intervals determines the number of additional successive
errors after the first timing error that can be tolerated. In
order to prevent borrowed times from accumulating, in ad-
dition to the error relay signal, an error flag is raised after
detection of a timing error in the first error detection in-
terval that causes a reduction in clock frequency. Because
no error correction mechanism is present, the frequency
must be reduced to a safe level so that a non-maskable
error does not occur. The second error detection interval
ensures that a possible additional error in the next stage
can also be masked to account for the latency in error
consolidation and frequency reduction.

Fig. 10a and shows the circuit level implementation of

(a) (b)

Figure 10: Circuit level implementation and timing diagrams of the
TIMBER flip-flop [7].

the TIMBER flip-flop. Design concepts of the TIMBER
latch is similar and are not discussed here (see [7] for de-
tails). Latches M0 and M1 take turns in driving the inputs
to the next stage by setting signal P such that inputs are
driven by M0 during the time borrowing interval and by
M1 during the rest of the clock cycle. Each TIMBER flip-
flop includes additional logic (not shown) for producing
the delayed clock (DCK) and relaying error signals to the
next stage. Incoming error relay signals are used to gen-
erate DCK by delaying the clock signal appropriately. If
the previous stage has not relayed error signals, the delay
is equal to the length of time borrowing interval. It is in-
creased by one or two error detection interval lengths if one
or two previous stages have experienced errors. Fig. 10b
the timing diagrams for a two-stage error occurring at flip-
flops f1 and f2. M0 samples the input data on the rising
edge of the clock and drives next stage input signals during
the time borrowing interval. M1 samples the input data
again on the rising edge of the delayed clock, guaranteeing
that the correct value is stored. If no timing error occurs,
M1 starts driving next stage input signals, starting at the
end of the time borrowing period for the rest of the clock
cycle, with the same value as in M0 and the EDS circuit
operates similar to a conventional flip-flop. In case of a
timing error, the correct value is launched a time borrow-
ing interval late. An error signal is generated at the falling
edge of the clock and relayed to the next stage flip-flops
to inform them of the late-arriving signal.

Minimum path delay constraints are improved in TIM-
BER due to the smaller detection window. However, metasta-
bility remains an issue and a metastability detector must
monitor the output of M0 to detect metastable signals in
case of a multiple-stage timing error. Since correct oper-
ation relies on accurate generation of the delayed clock,
guardbands are required for the clock control logic. More-
over, the complex design of this EDS circuit suffers from
high sensitivity to process variation. While TIMBER flip-
flop incurs a large energy overhead compared to previous
EDS circuits, accurate comparison of their relative effi-
ciency requires detailed information about single as well
as multiple-stage error rates.
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4. Performance Modeling

As the efficiency of timing speculative systems such as
the ones reviewed in this paper improves and researchers
consider them as viable alternatives to traditional always-
correct systems, development of performance models for
these systems becomes more important. In order to per-
form effective design space exploration as well as reliable
accuracy evaluation, efforts at various levels of the hard-
ware/software stack directed towards improving the per-
formance of timing speculative systems need platforms
that can emulate the behavior of the underlying system.
However, development of performance models for timing
speculative systems is significantly more complicated than
conventional error-free systems. In this section, we review
a timing model and its implementation as a simulator for
analysis of software error behavior in presence of process
variation.

4.1. Related Work

The need for fast and accurate timing models for esti-
mation of the system’s error behavior is most evident in the
‘Experimental Results’ sections of papers describing vari-
ability management techniques of erroneous systems (i.e.
systems that allow timing errors) where researchers face
the long simulation times of variability effects at the archi-
tecture level [20][24][30][17][25]. The lack of fast simulation
platforms for these systems is becoming a bottleneck and a
key challenge for erroneous systems research [16], [30]. As
a result, most works limit their analysis in both time (an-
alyzing only small parts of the application software) and
space (analyzing only a few components of the system),
adversely affecting optimization opportunities and/or ac-
curacy of evaluation. The following are some examples of
variability management techniques in which the analysis
of dynamic error behavior has been limited. Trifecta [20]
focuses only on the ALU adder and selection logic. Roy
and Chakraborty [24] only consider ALU errors and limit
their simulations to 100 instructions that most frequently
exercise the ALU. Xin and Joseph [30] focus on ALU, LSU,
and Shift/Branch units. Hoang et al. [17] reduce the size
of benchmark input sets due to extremely long run- times
associated with gate-level simulations. Similarly, Sartori
and Kumar [25] only study the LSU and IQ and do not
simulate the benchmarks for their entire duration.

At the same time, efforts specifically directed at devel-
opment of error models have also been limited. Rehman
et al. [23] assume that the area of functional units deter-
mine their error rate which, while acceptable in case of soft
errors, is not expendable to errors caused by variability.
Rahimi et al. propose Instruction [21] and Sequence [22]
Level Vulnerability to predict the error probabilities, but
their models do not specifically take input data depen-
dence into account. A number of recent works [24][30]
have proposed to use the Program Counter (PC) to pre-
dict errors, suggesting that various dynamic instances of
an instruction behave similarly due to locality of input

data. Such techniques, even if effective, do not result in
timing models that can be used at various phases of the
design of these systems. Finally, an emulation testbed
for variability-aware software called VarEMU is presented
in [29]. While VarEMU provides a fast and easy-to-use
platform for implementation of error models and may be
useful for variability-aware software power analyses, it can-
not handle the cycle-by-cycle nature of variability in caus-
ing errors due to the functional (and not cycle-true) oper-
ation of the underlying virtual machine.

4.2. Clustered Timing Model

The timing model presented in this section [1] maps
the low-level effects of process variation and path sensi-
tization onto the level of microarchitecture. The result
is then used in a microarchitecture simulator to enable
the analysis of error behavior as a function of the running
code. A processor’s Clustered Timing Model (CTM) es-
timates pipeline-stage-level instruction error probabilities
by (i) functionality-based clustering of its timing paths and
(ii) using architecture level information at simulation/run
time.

A CTM consists of a set of Register Clusters (RC) and
a set of hyperpaths connecting them. Fig. 11 shows a
depiction of a CTM for LEON3 [15], an in-order RISC
processor. RCs are clusters of registers (i.e. flip-flops or
input/output pins) whose logic levels at each clock cycle
constitute a value for the RC. A hyperpath represents a
collection of timing paths that connect its origin and des-
tination RC registers together. A random variable called
delay is associated to a hyperpath representing the effec-
tive delay of its constructing timing paths. The effective
delay of a set of timing paths combines their delay and
functionality and is defined as the maximum of the delays
of the subset of paths that are sensitized. A hyperpaths’
delay is, therefore, a function of the current and previous
values of its origin RC. By utilizing architecture-level in-
formation of the processor to determine hyperpaths used
by an instruction, the problem of estimating error prob-
ability of instructions can be reduced to the problem of
modeling this functionality, mapping value transitions of
a hyperpath origin RC to its delay.

While we defined a hyperpath as an object that ab-
stracts the timing characteristics of its timing paths, it
can equivalently be viewed as a collection of functional
paths. The correlation among timing paths is abstracted
into correlations among functional paths and the delay of a
hyperpath is calculated as the maximum of the delays of its
activated functional paths rather than the activated tim-
ing paths. In accordance, the set of possible transitions of
the value of the origin RC is mapped into a set of primary
transitions, such that a primary transition consists of all
transitions that sensitize a specific functional path. The
training step (not discussed here) involves characterization
of the delays and pair-wise correlations of functional paths.
The model can then estimate hyperpath delays simply by
detecting primary transitions of the RCs.
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Figure 11: Clustered Timing Model for LEON3 pipeline [1].

Without going into more detail, when constructing a
CTM, registers are clustered in a way that each resulting
hyperpath performs a certain operation. In the case of an
in-order RISC pipeline, hyperpaths can be divided, based
on their operation, into four types: data transfer, addi-
tion, logic, and hybrid hyperpaths. Each type has a cer-
tain set of functional paths, chosen in a way to enable easy
identification of activated functional paths from the origin
RC value transition. Let us take the example of addition
hyperpaths. These hyperpaths perform an addition opera-
tion on the contents of their origin RC. In LEON3 pipeline,
hyperpaths EXE-PC, EXE-I$, EXE-D$, and EXE-MEM
(when the active instruction in the execution stage is add

or sub) are addition hyperpaths. In a multi-bit addition, a
bit in the result may be changed due to either a local path
activation (i.e. a 1-0 or 0-1 situation at that bit position
in addition inputs) or a carry-chain activation from any
lower order bit. These paths, in fact, constitute the set of
functional paths of an addition hyperpath.

With these abstractions in place, [1] describes how A
CTM of LEON3, a representative in-order RISC proces-
sor, is developed, verified for accuracy, and implemented
in a microarchitecture-level simulator. A pipeline analysis
module is added on top of the simulator to provide stage-
level transition information of the running code. The tim-
ing model is implemented in a separate module which takes
an instruction trace and stage-level transition information
from the simulator and produces PoEs for each hyperpath
every clock cycle. These hyperpath PoEs are then com-
bined with architecture level information that determines
the activated hyperpaths of instructions to derive instruc-
tion error rates at different pipeline stages. The resulting
simulation platform is much faster than a timing analysis
framework implemented using low-level timing models and
enables the simulation of actual programs.
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