
Strategies for Optimal Operating Point Selection
in Timing Speculative Processors

Omid Assare and Rajesh Gupta
Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093–0404

{omid, gupta}@ucsd.edu

Abstract—Performance of timing speculative processors relies
on strategies for accurate prediction of optimal operating points.
In this paper, we develop an efficient process-variation-aware
simulation framework and use it to evaluate a range of such
timing speculation strategies. Our experiments on a timing
speculative processor running applications from the MiBench
benchmark suite show that, in a typical case, while a perfect
timing speculation strategy can improve throughput by up to
143% over a guardbanded design, the most commonly used
approach in the literature achieves only a 21.8% of the potential
gains. By improving the speculation accuracy, the new strategies
we propose in this paper can realize up to 35.6% of the potential
gains, a throughput improvement of 50.9% over a guardbanded
design.

I. INTRODUCTION

Traditional sequential circuit designs work under the strict

condition that voltage and frequency of the circuit should be

set such that no timing violations can occur. An increasingly

popular alternative approach called timing speculation [1],

on the other hand, allows timing errors by removing timing

margins and relies on circuit- and microarchitecture-level tech-

niques to detect and recover from these errors and guarantee

correct execution. The variability in how different instruction

sequences cause errors leads to increased performance during

the execution of less vulnerable code, while faulty instructions

are detected and corrected using special hardware and by

paying a recovery penalty.

Our work focuses on timing speculative processors that

use frequency to tune their operating point, but our method

is orthogonal to dynamic voltage scaling. Performance of

these processors is determined by two competing mechanisms.

While increasing the frequency improves processor throughput

by fitting more clock cycles into a fixed amount of time, it

also increases the rate of timing errors because more paths

fail timing requirements. The goal of dynamic frequency

tuning is finding the frequency that balances these effects

such that processor throughput is maximized. Accordingly,

timing speculative processors track the error rate during the

execution and use it as a feedback mechanism for tuning

their frequency. For instance, the conventional approach used

in most related proposals periodically samples the processor

error rate and tries to keep the long-term error rate close

to a pre-specified threshold by increasing (decreasing) the

frequency when the error rate is below (above) the threshold.

In this paper, we examine a range of strategies that a timing

speculative processor can adopt to dynamically select the

optimal operating point.
We also tackle the problem of simulating these systems

which is necessary to gain insight into their timing behavior

as well as comprehensive design space exploration. Error

rate models typically used for analyzing timing speculative

processors do not get more sophisticated than assigning differ-

ent numbers to various hardware/software components and/or

operating conditions, and the role of software in sensitizing

timing paths and changing error rates is often ignored. It is

even common to use the simplest possible model, a fixed

number, for error rate of the system at all times [2], [3], [4]. In

the absence of efficient error models and when more accuracy

is needed, researchers are left with no choice other than using

time-consuming low-level timing simulations, forcing them to

limit the analysis in both time (analyzing only small parts

of the application software) and space (analyzing only a few

components of the system), adversely affecting optimization

opportunities and/or accuracy of evaluation [5], [6], [7], [8].
In this paper, we develop an efficient instruction level

error model and use it in to create a fast process-variation-

aware simulation framework suitable for the study of timing

speculation.
Contributions of this work have been summarized below:

1) We introduce and analyze three timing speculation strate-

gies. First, we argue that frequency tuning should be

directed by software and performed at the basic block level

where instruction sequence is fixed and predictions are

likely to be more accurate. Second, we show that error

rate sampling should be temporally limited because the

most recent history of errors is often a better predictor of

timing behavior. Third, we propose a more robust scheme

for dynamic frequency tuning by relying on an optimization

algorithm instead of threshold-based control. Finally, we

describe the design of a new timing speculation scheme

based on these strategies.

2) We develop a simulation framework for evaluating the

performance of timing speculative processors. The frame-

work creates an instrumented version of the program that

simultaneously implements (i) a process-variation-aware

instruction level error model to predict timing errors and

estimate error rates as well as (ii) the dynamic frequency

584978-1-5090-5142-7/16/$31.00 c©2016 IEEE



tuning mechanism necessary to realize potential gains of

timing speculation. This method results in very high speed

simulations because instead of using a micro-architecture

level simulator, they are performed by running the instru-

mented program on any machine that implements ISA of

the target processor.

3) Using our simulation framework, we tune the design pa-

rameters of our timing speculation scheme and evaluate its

performance. We show that our method improves processor

throughput by more than 50% over a conventional guard-

banded design while incurring little power overhead. To put

this improvement in perspective, we evaluate the potential

gains of an ideal timing speculation scheme that can

perfectly track the timing behavior of the system as well

as the most popular method in the literature. We find that

while the conventional approach can only realize around a

fifth of the potential gains of timing speculation, even our

efficient method leaves almost two-thirds of potential gains

untapped.

II. SPECULATION STRATEGIES

In this section, we describe the design of our timing

speculation scheme while analyzing the three main speculation

strategies it adopts.

A. Selective Local Speculation

A number of recent works have documented the concept of

spatial timing error locality where static instructions exhibit

consistent error behavior over a period of program execution

[8]. To take advantage of this phenomenon, in selective local
speculation, decisions for changing the frequency are made

separately for some basic blocks. This is in contrast to the

conventional approach where the processor only tracks and

controls the global error rate. We expect that a speculation

strategy that works on the basic block level where the instruc-

tion sequence is fixed can make more accurate predictions.

This scheme can be realized by maintaining a table of basic

block error rates and frequencies tagged by the PC address of

the first instruction in the basic block. We refer to this table

as timing speculation table. At the basic block entry when

PC points to the first instruction, the frequency is set to the

value previously stored for the basic block. This value should

then be updated with a new frequency prediction for the next

execution at the basic block exit. To track when execution

is exiting the basic block, the table also includes a counter

initiated with the number of basic block instructions, NI , at

the entry of the basic block. This counter is decremented each

time an instruction finishes execution, reaching zero at the

basic block exit.

The additional costs over the conventional approach include

the power and area of the timing speculation table as well

as potentially more frequent frequency changes. To control

these costs, we introduce two design parameters. The first

parameter, NB , limits the speculation instances spatially to

the NB most frequently executed basic blocks. These basic

blocks are selected for local speculation because the accuracy

of predicting their frequency affects running time more sig-

nificantly than others. NB determines the number of entries

in timing speculation table. Similar to [7], we assume that

the table is implemented as a SRAM structure and incurs a

negligible power overhead as long as NB ≤ 128.

The second parameter, NS , limits the speculation instances

temporally by specifying how many times we skip prediction

and reuse the previous frequency for a basic block before a

new prediction is made. For example, NS = 4 means that

a predicted frequency will be reused for the next 4 execu-

tions of the basic block. This effectively limits the number

of frequency changes for single basic block loops because

the predicted frequency does not change for the next NS

iterations/executions. Similar to NI , this can be implemented

with a counter decremented with each basic block execution.

New predictions are kept from updating the frequency field of

the timing speculation table unless the counter value is 0. We

will explore the design space created by these parameters in

Section V.

B. Limited Error Sampling

Selective local speculation is based on the assumption that

error rate of previous executions of a basic block is a better

predictor of its future error rate than the global error rate. This

local strategy raises the question of the appropriate depth of

error rate sampling. To predict the future error rate of a basic

block, should we implement a long-term sampling scheme

using error rates of all previous executions of the basic block,

or rely only on its most recent history and use, for instance,

the only last n executions?

To answer this question, we designed and performed a

simple experiment. In this experiment, we explored how the

effective delay of an instruction defined as the propagation

delay of the slowest path it sensitizes changes as it is executed

multiple times. We selected the 5 most time consuming basic

blocks of the programs in Mibench benchmark suite [9]

and tracked the effective delays of their instructions as they

were iteratively executed in loops. We then measured the

distance between effective delays of dynamic instances of

each instruction. Fig. 1 shows the average distance of the

instruction effective delays as a function of their execution

distance. Execution distance of two dynamic instances of an

instruction executed in the kth and jth iterations of the loop

is defined to be |k − j|. For example, the execution distance

between two dynamic instances of an instruction executed

in the first and second iterations of the loop is 1 while the

first and third instances have an execution distance of 2.

Instruction delay distances were measured as the Hellinger

distance between the distributions. As Fig. 1 shows, there is

a generally direct relationship between delay and execution

distances. This implies that the most recent execution of a

basic block is likely a better predictor of its next execution

in terms of timing errors. Accordingly, limited error sampling
uses the most recent error rate of a basic block to predict its

next frequency.

2016 IEEE 34th International Conference on Computer Design (ICCD) 585



Fig. 1: Delay distance as a function of execution distance.

C. Maximum Throughput Tracking

In the conventional approach, frequency is adjusted so

that the error rate remains close to a pre-specified error rate

threshold. Consequently, the performance of this method is

highly dependent on the selection of error rate threshold(s). In

addition to the difficulty of finding optimal threshold values,

this approach cannot capture the highly dynamic relationship

of frequency and error rate. Maximum throughput tracking is a

more robust strategy where error rate threshold is eliminated

and frequency adjustments are made based on the dynamic

changes of throughput rather than the raw error rate. Similar

to the well-known hill climbing algorithm, the direction of

frequency change in each iteration is determined based on the

effect of the previous change on the throughput. Frequency is

increased when a previous frequency increase (decrease) has

resulted in an increase (decrease) in throughput. Conversely,

frequency is decreased when a previous frequency increase

(decrease) has led to a decrease (increase) in throughput.

Similar to [7], we assume the hardware cost of implementing

this algorithm is negligible.

III. ERROR MODEL

We use a functional timing model called Clustered Timing
Model (CTM) [10] that enables dynamic timing analysis by

grouping functionally similar timing paths of the processor and

modeling their collective propagation delay as a function of

their specific operation. Accuracy of CTM has been verified

with a maximum error of 6.7% across a wide range of voltage-

temperature corners [10]. Our approach in estimating effective

delay of instructions is motivated by the observation that

typical applications spend most of their runtime in loops,

executing a few basic blocks over and over again. In order

to take advantage of this, we develop timing models for each

basic block in a pre-characterization phase where the most

time consuming parts of the timing analysis are performed

offline. In the next section, we will show how this approach

allows the simulation to be performed at the architecture level,

significantly improving the simulation time.

A. Clustered Timing Model

Overview. CTM partitions the endpoints of a digital circuit

into a set of Register Clusters (RC) and the timing paths into a

set of hyperpaths that connect the RCs together. We consider

the integer unit of LEON3, an open-source in-order processor

core that implements the SPARC V8 architecture [11]. As

instructions go through the pipeline, they change the RC

values. The model then includes a function for each hyperpath

that predicts its effective delay (i.e. maximum propagation

delay of its sensitized paths) based on its origin and destination

RC value transitions. Finally, an instruction is predicted to

cause a timing error when at least one of the hyperpaths it

uses has an effective delay larger than the clock cycle.
Functional Paths. In order to map RC value transitions

to hyperpath effective delays, CTM models each hyperpath,

which is essentially a collection of timing paths, as a set of

functional paths. The operation performed by a hyperpath is

then viewed as a combination of the activation of some of

its functional paths. As an example, consider the execution

stage hyperpath when an add instruction is being performed.

This hyperpath consists of the timing paths of the multi-bit

adder in the execution stage. Roughly speaking, each bit in the

output of the adder can go high using a carry chain that starts

from a lower order position (we ignored the local activation

when input carry is zero because carry chains are typically

slower). Accordingly, CTM considers a functional path for

every possible carry chain in the adder, from every bit position

to all higher order ones. Functional paths of all hyperpaths are

identified similarly based on their specific operation.
Training and Use. Training of a CTM involves charac-

terizing the delay of functional paths. This is achieved by

measuring the hyperpath delay when running special training

codes designed to selectively activate specific functional paths.

When process variation is considered, all delay values turn into

random variables and the correlation between timing paths

is abstracted into correlations between functional paths. To

use the model, the delay of a hyperpath is calculated as the

maximum of the delays of its activated functional paths rather

than the activated timing paths.
Implementation. We implemented a CTM for LEON3 in

a micro-architectural simulator, similar to the one described

in [10], that takes a sequence of instructions and produces

their effective delays. Since the model needs RC values at

every clock cycle, the simulation cannot be performed at

the architecture level and is, therefore, too slow for typical

programs with large data sets. Throughout this paper, measur-
ing instruction probabilities refers to using this CTM-enabled

simulator to estimate them.

B. Control Delay Characterization

Distinguishing the data and control planes of the processor,

our approach is based on the intuition that while the sensitized

paths in the processor datapath vary each time a basic block

is executed with a different input, control network paths go

through similar activation patterns. Using CTM terminology,

we propose to classify the hyperpaths into two types: (i)

586 2016 IEEE 34th International Conference on Computer Design (ICCD)



control hyperpaths that together constitute the control network

of the processor, and (ii) data hyperpaths that together form

the datapath. Then, the effective delay of an instruction, D, is

estimated as,

D = MAX (Dcontrol, Ddata) , (1)

where MAX represents a statistical maximum operation and

Dcontrol and Ddata are the effective delay of the control and

data hyperpaths used by the instruction, respectively, hereafter

referred to as the instruction control and data delays. Note that

all delays are assumed to follow a Gaussian distribution.
By moving the estimation of control hyperpath delays to

an offline pre-characterization phase, we expect to achieve

significant simulation time improvements for the following

two reasons. First, while data hyperpaths perform operations

that can be concisely described mathematically, control hy-

perpaths have a more irregular functional path structure due

to the bit-level computations they perform on control signals.

More importantly, we can now perform the simulation at

the architecture level because data hyperpath delays can be

modeled using only architecturally visible registers whereas

estimating control hyperpath delays requires values of internal

pipeline registers, referred to as RCs in CTM terminology.
Therefore, in the pre-characterization phase, we measure

the control delays of all instructions for each basic block. A

complicating issue is the effect of the program control flow.

Instructions of two neighboring basic blocks usually share the

pipeline during their execution. As a result, control delay of

an instruction could be different depending on the previous

executed basic block. To account for this effect, we measure

instruction control delays once for each possible previous basic

block in the Control Flow Graph (CFG). Later during the

simulation when the previous basic block is known, we use

the appropriate control delay when evaluating Eq. 1.
Suppose that we want to characterize control delays of

instructions in basic block B along one of its incoming edges

e from basic block B′. We implemented a simple symbolic

execution tool that derives the branch condition of B′ in terms

of its input (i.e. registers and/or memory locations accessed by

instructions in B′). This condition is then used to ensure that

the randomly generated input executes e. Finally, the execution

is started at the top of B′ and control delays of instructions in

B are measured. This process is repeated multiple times and

the mean of all measured control delays of each instruction is

used during the simulation.
To evaluate the accuracy of our model, we randomly se-

lected 100 basic blocks from the applications in MiBench

[9] benchmark suite. These basic blocks contained an average

of around 11 instructions. We characterized the basic blocks

using 10 measurements for each control delay estimation using

the method described above. Finally, using 100 randomly

generated input vectors for each basic block, we compared the

estimated and measured effective delays of all instructions. To

quantify the comparison, we use squared Hellinger distance as

a measure of the difference between instruction delay distri-

butions. It takes values between 0 and 1 where smaller values

indicate more accuracy. The squared Hellinger distance for two

Gaussian distributions, P ∼ N(μ1, σ1) and Q ∼ N(μ2, σ2),
is given by,

H2(P,Q) = 1−
√

2σ1σ2

σ2
1 + σ2

2

e
−
1

4

(μ1 − μ2)
2

σ2
1 + σ2

2 . (2)

We found that the distance was smaller than 0.1 in 97.3% of

the experiments with an average value of 0.027, illustrating

the reliability of the model.

C. Error Rate Estimation

During the simulation when frequency is known, instruction

delays estimated by the error model must be converted into

basic block error rates so that the simulator can implement

frequency tuning. Since instruction delays are estimated as

Gaussian distributions, the probability of an instruction expe-

riencing a timing error, referred to as its error probability, is

given by,

P =
1

2

[
1 + erf

( 1
F − μ√
2σ2

)]
, (3)

where F is the working frequency, μ and σ are the mean and

standard deviation of the instruction delay, and erf(·) is the

error function.

Now, consider a basic block containing n instructions with

error probabilities p1, . . . , pn. To estimate the error rate, let

I = (I1, . . . , In) be a set of Bernoulli random variables

corresponding to the instructions such that Pr(Ii = 1) = pi.
Clearly, the number of errors can be expressed as the sum

of instruction random variables, ne =
∑n

i=1 Ii. Therefore,

the expected number of errors can be calculated by summing

instruction error probabilities and the expected error rate is

given by,

re =
1

n

n∑
i=1

pi. (4)

IV. SIMULATION FRAMEWORK

In this section we describe a framework for evaluation of

various timing speculation strategies. The framework creates

an instrumented version of the program that simultaneously

implements the error model described in Section III to predict

timing errors and estimate error rates as well as the timing

speculation strategy described in Section II to perform dy-

namic frequency tuning. To perform the simulation, the instru-

mented program can be run on any machine that implements

the instruction set architecture (ISA), resulting in very fast

simulations. The operation of the instrumented program can

be summarized in the following steps:

Before executing a basic block, error rate is read, fre-

quency is set and pre-characterized instruction control delays

corresponding to the executed incoming edge are loaded.

During the execution, transition signatures of instructions

are extracted and saved. Transition signatures, which will be

explained shortly, are used to identify the functional paths

2016 IEEE 34th International Conference on Computer Design (ICCD) 587



activated by an instruction. After executing the basic block,

activated functional paths are identified from transition signa-

tures and used to estimate data delay of instructions. Then,

effective delays of instructions are estimated using data and

control delays and are used to find error probabilities of

instructions using current frequency. Finally, the expected error

rate of the basic block is computed, recorded and used to

calculate speculation speedup.

A. Transition Signatures

Suppose that we are interested in finding the functional

paths activated by the current instruction, ic, with operands opc1
and opc2 and result rc, which is executed immediately after the

previous instruction, ip, with operands opp1 and opp2 and result

rp. Below, we define a set of transition signatures derived from

these architecturally visible parameters that uniquely identify

the functional paths activated by ic.

Register Access. In the register access stage, two sets of

functional paths simply transfer the instruction operands from

the register file. Activated functional paths are those used by

exactly one of the instructions and can be readily identified

from the two transition signatures tsra1 = opc1⊕opp1 and tsra2 =
opc2 ⊕ opp2, where ⊕ is the exclusive or operation.

Execute. In the execution stage of LEON3, all functional

units share a single register for input operands. As a result,

each functional unit performs its operation on the shared

operands although the result of only one is registered. There-

fore, the previous state of the active functional unit which, to-

gether with its current state, determines its sensitized paths, is

the state induced by performing its operation on the operands

of the previous instruction, even if it was a different type

of instruction. To emulate this shared register scheme, we

assume that the previous instruction ip performs the same

type of operation on its operands as the current instruction

ic. We will later show that this assumption can easily be

implemented by inserting another instruction with source and

destination registers of ip and the opcode of ic between the

two instructions. Transition signatures are then defined based

on the type of the instruction.

For logical instructions (and, or, etc.), each functional path

is used if the corresponding bit in the result is 1 and the

activated functional paths are those used by exactly one of

the instructions, readily identified from the transition signature

tsexe = rc ⊕ rp. Arithmetic instructions (add, sub, etc.) and

memory access instructions (ld and st, which behave similar

to add) have functional paths corresponding the carry chains

of the addition they perform in the execute stage. Consider the

multi-bit addition, s = a+ b in which si = ai ⊕ bi ⊕ ci where

ci denotes the input carry to ith bit. We can find carry bits by

rewriting this as ci = ai ⊕ bi ⊕ si. A carry chain from bit i
to bit j (i < j) is used when ci = 0, ci+1 = ... = cj = 1,

and cj+1 = 0. Therefore, we define two transition signatures

tsexe1 = opp1 ⊕ opp2 ⊕ rp and tsexe1 = opc1 ⊕ opc2 ⊕ rc. The

activated functional paths are those used by exactly one of the

additions.

Memory Access and Write-Back. The functional paths

used in the memory access and write-back stages are deter-

mined by instruction results. Therefore, activated functional

paths can be readily identified from the two transition sig-

natures tsmem = tswb = rc ⊕ rp. Note that while the

activation patterns are the same, functional paths of ld and

st instructions in the memory stage are different from those

of other instructions.

B. Source Code Instrumentation

In this section, we describe a source code instrumentation

technique that extracts and stores the transition signatures and

implements our timing speculation scheme. We explain the

details using the example in Fig. 2 which shows how each

basic block in the CFG is instrumented.

Incoming Edge Basic Block. A basic block is added along

each incoming edge. Lines 1-2 call the function bb_in with

the parameter bb_id that identifies the basic block. This

function reads the error rate and is responsible for setting

the frequency for the basic block. It also loads the control

delays corresponding to the incoming edge into a pre-specified

array to be used for estimating instruction delays. In lines 3-

5, r1, r2, and r3 represent any three regular registers not

read or written in the basic block. These registers which are

called working registers are copied into three Ancillary State

Registers (ASRs). ASRs are a set of 16 registers provided by

SPARC architecture for profiling and testing purposes.

Outgoing Edge Basic Block. A basic block is added along

each outgoing edge. In lines 27-29, the working registers are

restored to their original values. Lines 30-31 call the function

bb_out with the basic block index which (i) identifies the

activated functional paths using extracted transition signatures,

(ii) uses them to estimate data delays, (iii) reads control delays

and calculates instruction delays, and (iv) computes instruction

error probabilities, the expected error rate, and speculation

speedup.

Instrumented Basic Block. The original basic block is

replaced by another basic block that identifies and stores

the transition signatures of all its instructions. Lines 6-26

show the instructions that replace a ld [%l1+%l2], %l3
instruction. We chose a load instruction to explain the in-

strumentation technique as it is the most complex type of

instruction for transition signature extraction and shows all

instrumentation code details . Lines 6-7 move operands of the

previous instruction into r1 and r2. Instrumentation codes

of all instructions store the operands and the result of the

the current instruction in asr1, asr2, and asr3 (lines 16,

17, and 23). Lines 8-11 extract and store transition signatures

for the register access stage (i.e. tsra1 and tsra2 ). Line 12

emulates the shared operand register scheme by performing the

operation of the current instruction in the execute stage on the

operands of the previous instruction. Lines 13-15 then identify

and store one of the execution stage transition signatures tsexe1 .

Operands of the current instruction are stored in asr1, asr2
in lines 16-17 before the second transition signature of the

execute stage, tsexe2 , is extracted in lines 18-21. Line 22 is

588 2016 IEEE 34th International Conference on Computer Design (ICCD)



Incoming Edge Basic Block

1. set %o0, bb_id
2. call bb_in; nop
3. wr %r1, %asr4
4. wr %r2, %asr5
5. wr %r3, %asr6

Instrumented Basic Block

...
6. rd %asr1, %r1
7. rd %asr2, %r2
8. xor %l1, %r1, %o0
9. call save_sig; nop
10. xor %l2, %r2, %o0
11. call save_sig; nop
12. add %r1, %r2, %r3
13. xor %r1, %r2, %o0
14. xor %r3, %o0, %o0
15. call save_sig; nop
16. wr %l1, %asr1
17. wr %l2, %asr2
18. add %l1, %l2, %r3
19. xor %r1, %r2, %o0
20. xor %r3, %o0, %o0
21. call save_sig; nop
22. ld %l1, %l2, %l3
23. rd %asr3, %r3
24. xor %l3, %r3, %o0
25. call save_sig; nop
26. wr %l3, %asr3
...

Outgoing Edge Basic Block

27. rd %asr4, %r1
28. rd %asr5, %r2
29. rd %asr6, %r3
30. set %o0, bb_id
31. call bb_out; nop

Fig. 2: Instrumentation code of basic block and load instruc-

tion as an example.

the original load instruction executed to ensure that behavior

of the instrumented program does not change. Finally, the last

pair of transition signatures, tsmem and tswb are extracted

and stored in lines 23-25 and the result of the instruction is

stored in asr3 in line 26. All arrays used for storing variables

including frequencies, error rates, etc. are maintained as global

variables as are functions bb_in, save_sig, and bb_out
which are written in C and linked with the instrumented

program. We implement the instrumentation technique in C++

and recompile the instrumented codes to produce executables.

To perform the simulation, the instrumented program can be

run on any machine that implements the ISA.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the timing speculation strategies

proposed in this paper. Note that experiments for validating our

error model were presented in Section III.

A. Experimental Setup

Synthesis and Static Timing Analysis. The design was

synthesized on the 45nm TSMC technology targeting the

typical-case corner (TT, 0.9V, 25C). We set the frequency of

our baseline system to 718MHz using SSTA at (0.81V, 25C),
guardbanding for a 10% voltage droop. For a fair comparison,

we assume a fixed supply voltage of 0.81V for the timing

speculative systems studied. This ensures that performance

improvements accurately reflect the ability of the speculation

strategies to track data variations.
Error Detection and Correction. We assume that error

detection and correction circuits guarantee correct execution.

We adopt a conservative error correction mechanism known

as instruction replay at half-frequency. When a timing error

is detected, the frequency is halved, the pipeline is flushed,

and the errant instruction is reissued, resulting in a 24 cycle

recovery penalty for our 6-stage pipeline.
Dynamic Frequency Tuning. Similar to a LEON3-based

45nm resilient Intel research processor [12], we consider a

clock generator that uses phase-locked loop (PLL) based on

the one in the 45nm Intel Core i7 microprocessor [13] which

provides fine-grain frequency tuning in less than 2 cycles,

which we consider as the penalty of each frequency change.
Power and Area Overheads. Implementing these adaptive

clocking and error detection and correction schemes on a

processor similar to LEON3 has been shown to incur a power

and area overhead of less than 0.9% and 3.8%, respectively

[12].

B. Speculation Strategies

Before we can evaluate the performance of our speculation

scheme, we need to tune the design parameters described

in Section II.B. We selected 12 applications from MiBench

benchmark suite for our study. We used the small datasets

of benchmark applications for tuning and the large datasets

for performance evaluation. In all experiments, throughput

values have been normalized to the throughput of the error-free

guardbanded design.
1) Tuning NB: This parameter which specifies the number

of basic blocks for which timing speculation is performed

determines the number of entries in the timing speculation

table. For this evaluation, the other parameter is set to its

default value, NS = 0. Fig. 3 shows normalized throughput

as NB is increased by powers of two from 2 to 128. From the

figure, it can be seen that maximum throughput is achieved

for NB = 32 or NB = 64 depending on the application. A

larger NB increases throughput by improving the accuracy of

frequency predictions. However, it also increases the number

of frequency changes which incur a 2-cycle penalty each and

limit throughput increase. Based on these results, we consider

NB = 32 or NB = 64 for now.
2) Tuning NS: This parameter specifies how many times a

basic block skips frequency prediction and reuses the previous

frequency before a new prediction is made. Since a larger

NS reduces the number of frequency changes, it could allow

for a larger NB as well. We then consider both NB = 32

2016 IEEE 34th International Conference on Computer Design (ICCD) 589



or NB = 64 for this experiment. Fig. 4 shows normalized

throughput as NS is increased from 0 to 3. From the figure, it

can be seen that the best value for NS is highly dependent on

the application. For example, the performance of patricia
and stringsearch is significantly better for NS = 0.

This indicates a highly variable timing behavior which re-

quires more frequent predictions to achieve high accuracy. In

contrast, bitcount, crc32, and dijkstra exhibit highly

predictable timing behaviors which allows for less predictions.

It is interesting to note that when NS is not 0, NB = 64
performs better than NB = 32 by limiting the number of

frequency changes. Based on these experiments, we select the

first two parameters, NB = 64 and NS = 1, for the next

experiments.

3) Performance Evaluation: Using the tuned parameters,

we evaluated the performance of our speculation scheme.

Fig. 5 shows the results of our experiments for three timing

speculative systems. Our speculation scheme is denoted by

Proposed. The conventional approach, denoted by Razor
in the figure, periodically records the global error rate and

compares it to a threshold value. For a more conservative

comparison, we chose the sampling frequency and error rate

threshold values that maximized the performance on average.

The Oracle strategy represents an ideal system that precisely

predicts all instruction delays and instantly sets the frequency

to the largest value that causes no timing errors for each

basic block. We obtained the throughput of this system by

simply summing the effective delays of all executed basic

blocks. Effective delay of a basic block is the maximum of its

instruction delays.

The figure shows that our proposed scheme consistently

outperforms the conventional approach. On average, Oracle
improves throughput of the guardbanded design by 143%.

But the conventional approach achieves a 31.1% improve-

ment, realizing less than 22% of the potential gains. While

the strategies introduced in this paper achieves a throughput

improvement of 50.9%, more than 64% of the potential gains

remains untapped. This points to the significant opportunities

for improving system performance with timing speculation.

VI. CONCLUSION

Using the efficient simulation framework described in this

paper, we studied the opportunities provided by timing specu-

lation for improving system performance and found that cur-

rent methods realize only a fraction of the potential speedup.

We proposed a timing speculation scheme that attains more

performance gains by improving the quality of frequency

predictions. Our timing speculation method limits the scope

of speculation both in time and space. Spatially, we argued

that frequency tuning should be directed by software and

performed at the basic block level where instruction sequence

is fixed and predictions are likely to be more accurate. Tem-

porally, we showed that the most recent history of errors is

a better predictor of timing behavior. Finally, we proposed

to dynamically tune the frequency using an optimization

algorithm instead of a controller. Together these strategies

achieved a throughput improvement of 50.9%.

ACKNOWLEDGMENT

This material is based upon the work supported by the

National Science Foundation’s Variability Expedition in Com-

puting under Award No. 1029783. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the National Science Foundation.

REFERENCES

[1] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors for low-
power operation,” Micro, IEEE, vol. 24, no. 6, pp. 10–20, Nov 2004.

[2] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An
architectural framework for software recovery of hardware faults,”
Comp. Arch. News, vol. 38, no. 3, pp. 497–508, Jun. 2010. [Online].
Available: http://doi.acm.org/10.1145/1816038.1816026

[3] M. Choudhury and K. Mohanram, “Approximate logic circuits for
low overhead, non-intrusive concurrent error detection,” in Design,
Automation and Test in Europe, 2008. DATE ’08, March 2008, pp. 903–
908.

[4] V. Kozhikkottu, S. Dey, and A. Raghunathan, “Recovery-based
design for variation-tolerant socs,” in Proceedings of the 49th
Annual Design Automation Conference, ser. DAC ’12. New
York, NY, USA: ACM, 2012, pp. 826–833. [Online]. Available:
http://doi.acm.org/10.1145/2228360.2228510

[5] P. Ndai, N. Rafique, M. Thottethodi, S. Ghosh, S. Bhunia, and K. Roy,
“Trifecta: A nonspeculative scheme to exploit common, data-dependent
subcritical paths,” Very Large Scale Integration (VLSI) Systems, IEEE
Trans. on, vol. 18, no. 1, pp. 53–65, Jan 2010.

[6] S. Roy and K. Chakraborty, “Predicting timing violations through
instruction-level path sensitization analysis,” in Proceedings of the
49th Annual Design Automation Conference, ser. DAC ’12. New
York, NY, USA: ACM, 2012, pp. 1074–1081. [Online]. Available:
http://doi.acm.org/10.1145/2228360.2228555

[7] J. Xin and R. Joseph, “Identifying and predicting timing-critical
instructions to boost timing speculation,” in Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-44. New York, NY, USA: ACM, 2011, pp. 128–139. [Online].
Available: http://doi.acm.org/10.1145/2155620.2155636

[8] G. Hoang, R. B. Findler, and R. Joseph, “Exploring circuit timing-
aware language and compilation,” in Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVI. New
York, NY, USA: ACM, 2011, pp. 345–356. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950405

[9] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, Dec 2001, pp. 3–14.

[10] O. Assare and R. Gupta, “Timing analysis of erroneous
systems,” in Proceedings of the 2014 International Conference
on Hardware/Software Codesign and System Synthesis, ser. CODES
’14. New York, NY, USA: ACM, 2014, pp. 7:1–7:10. [Online].
Available: http://doi.acm.org/10.1145/2656075.2656101

[11] A. Gaisler, “Tsim erc32/leon simulator.” [Online]. Available:
http://www.gaisler.com/cms/

[12] K. Bowman, J. Tschanz, S. Lu, P. Aseron, M. Khellah, A. Raychowd-
hury, B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik, and V. De, “A
45 nm resilient microprocessor core for dynamic variation tolerance,”
Solid-State Circuits, IEEE Journal of, vol. 46, no. 1, pp. 194–208, Jan
2011.

[13] N. Kurd, P. Mosalikanti, M. Neidengard, J. Douglas, and R. Kumar,
“Next generation intel core micro-architecture (nehalem) clocking,”
IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1121–1129,
April 2009.

590 2016 IEEE 34th International Conference on Computer Design (ICCD)



Fig. 3: Tuning NB . Normalized throughput as NB is increased from 2 to 128.

(a) NB = 32

(b) NB = 64

Fig. 4: Tuning NS . Normalized throughput as NS is increased from 0 to 3.

Fig. 5: Normalized throughput of our timing speculation scheme.

2016 IEEE 34th International Conference on Computer Design (ICCD) 591



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


